The Weizmann Experience: discussions on the future of cosmology

Together with Francoise Combes, who was recently appointed as a professor in the most prestigeous institution in France, Le College de France, and Benoit Famaey, who is an expert on Milgromian dynamics and its deeper foundations (e.g. Famaey & McGaugh 2012), we were invited by Mordehai (Moti) Milgrom to spend a whole week at the Department of Particle Physics and Astrophysics in the Weizmann Institute in Rehovot, Israel. A link to the video (dubbed in English) of the inaugural lecture given by Francoise Combes for her new chair and the introduction by Serge Haroche (Nobel Prize 2012 in physics) is available here (alternatives to the dark matter approach are explicitly mentioned by both).

I met Benoit at Frankfurt airport in the very early morning (he was heading in some random direction) since we had booked the same Lufthansa flight to Tel Aviv. We arrived on Sunday, March 6th, and met Moti at his office in the late afternoon.

In the entrance hall of the department. From left to right: Einstein's field equation without Lambda, Francoise Combes, Mordehai Milgrom, Pavel Kroupa and Benoit Famaey.
In the entrance hall of the Department. From left to right: Einstein’s field equation without Lambda, Francoise Combes, Mordehai Milgrom, Pavel Kroupa and Benoit Famaey.

Coming to know the place and first discussions

I am very impressed by the size and beautiful campus of the whole Weizmann Institut, and how pleasant the entire ambiente is.

Chairs and a pond infront of th Department.
Chairs and a pond infront of the Department.

The people are very friendly and helpful. And interested. I was staying at the spacious and luxurious San Martin Faculty Clubhouse. At night the various buildings and park areas in the Weizmann Institute are illuminated beautifully, with warm lights setting accents and emphasizing a welcoming atmosphere.

The highly-ranked  Weizmann Institute consists of many departments of various natural sciences and seems to be perfectly created for academic pursuit, including leisure areas. Its success in the pursuit of basic research in the natural and exact sciences and in acquiring funding is evident through the architecture, spaciousness, and general design.

There was no planned agenda for us, apart that Benoit was to give a talk on Wednesday, 9th of March, at 11:15, and for Francoise Combes to give a departmental colloquium on Thursday, 10th of March at 11:15. In between these talks we could do either nothing and hang about enjoying the sunshine and exquisite weather and pool, or engage in intense discussions. Perhaps due to the ambiente and of course our comparable research interests, we largely chose the latter.

On Monday, 7th of March, we had a very relaxed day, meeting with Moti at the Department in the late morning and spending our time debating. Typical discussion points (largely between Francoise, Benoit and myself) throughout the visit were the local major underdensity and its possible implications on the value of the cosmological Lambda, the underlying theory of MOND and whether it is due to a “dark” fluid which behaves like dark matter on large scales (e.g. Luc Blanchet’s dipoles and Justin Khoury’s condensate)

Given that Lambda was missing in the equation displayed in the entrance hall of the Department (see first photo above), we began to discuss it. And this is where the “local” underdensity now plays a possibly important role, see this figure from Kroupa (2015),

The underdensity is significant, according to the shown data, and may challenge any cosmological model. From Kroupa (2015).

 

and in contrast the very recent work by Whitbourn & Shanks where the authors explicitly state agreement with the previous survey by Kennen et al. (2014). The independent finding by Karachentsev (2012) on the local 50 Mpc scale appears to naturally continue the trend evident from the Kennan et al. data (see the figure on the left), IF one assumes the same baryonic to dark-matter ratio as at larger distances. The actually measured stellar density remains similar to the Keenan et al. value at small distance. So the baryonic density (assuming the gas to star ratio and the contribution by dwarf galaxies to remain unchanged out to distances of 800 Mpc [redshift of 0.2]) then within 300 Mpc there is at least a decrease in the baryonic density by factor of two. Conversely, taking Karachentsev’s measurement, we would see a disappearance of dark matter nearby to us since the stellar density remains similar to the Kennen measurement within 150 Mpc while the dark matter density decreases further. So the measurements appear to imply the following picture: within 400 Mpc the luminous (and thus baryonic) matter density decreases significantly by a factor of two. At the same time, the ratio of dark matter to baryonic matter decreases even more. Both findings violate the cosmological principle.

The work by David Wiltshire (his lecture notes) and Thomas Buchert already indicates that inhomogeneities could possibly make the Universe appear to an observer situated within such an underdensity as if it’s expansion is accelerating, although in truth it is not. That is, the inhomogeneities appear to be of the correct magnitude to eliminate the need for Lambda, Lambda (dark energy) merely being an apparent effect mis-interpreted by the supernova type 1a data. The reason lies in that a distant object’s observed redshift depends in reality on the exact paths the photons travel in a universe which consists of time-changing voids and over-densities, and this is a different redshift computed assuming a homogeneous and isotropic expanding Universe.

But we need more detailed calculations taking into account the constraints from the observed under-density shown in the figure to be assured that Lamba=0. It is certainly true that Lambda=0 may be more in line with theoretical ideas than the very small value deduced to explain an apparently accelerating Universe, because it is actually predicted, from quantum field theoretical calculations of the vacuum (for details see e.g. Padilla 2015), to have a value some 60 to 120 orders of magnitude larger. It should be emphasized, though, that “MOND likes Lambda“, in the words of Moti. The reason is that the Lambda derived from astronomical observations (e.g. from supernovae of type 1a observations) and Milgrom’s constant a_0 appear to be naturally related, and MOND may be derivable from vacuum processes (Milgrom 1999).

Within about 300 Mpc, where we can say that we have the best measurements, the Universe is nicely consistent with MOND. The mass-to-light ratios of galaxy groups are less than 10 (Milgrom 1998 and Milgrom 2002), i.e. there is only baryonic matter. The observationally inferred increased density of baryonic matter at distances larger than 300 Mpc would then perhaps be due to cosmological models being inappropriate, i.e. that the currently used red-shift–distance relation may be wrong.

We also debated galaxy evolution, the fraction of elliptical galaxies and the redshift dependence of this fraction. Notably, fig.7 in Conselice (2012)  shows that the observed fraction of massive galaxies does not evolve although the LCDM model predicts a strong evolution due to merging. This is consistent with the independent finding by Sachdeva & Saha (2016) that mergers are not a driving mechanism for galaxy evolution, and this is in turn consistent with the independent findings reached by Lena et al. (2014)  on the same issue.

We further talked about how LCDM is faring on large, intermediate and small  scales, how stellar populations change with physical conditions, the variation of the IMF, as well as political topics. The discussions were far from reaching consensus, we had different views and data sets we could quote on various problems, and time flew by such that we barely noticed.

However, Moti managed to drag us away from his Department, and showed us around the Weizmann institute. An particular station was the famous landmark tower which once housed the Koffler Accelerator and which now houses, in its “bubble”,

The tower which housed the Koffler Accelerator and which now houses a conference room (in its “bubble”) and the Martin S. Kraar Observatory.

a conference room and also the Martin S. Kraar observatory which is also used in international top-level research projects. The director of the observatory, Ilan Manulis, kindly explained to us in much detail its functionality and design for full remote-observations without human interference.

Viewing the lands from the top of the Koffler Accelerator Building. From left to right: Benoit Famaey, Francoise Combes and Mordehai Milgrom.
Part of the Weizmann Institute as viewed from the top of the Koffler Accelerator.
Part of the Weizmann Institute as viewed from the top of the Koffler Accelerator Building.
The "bubble" housing the conference room in the tower of the Koffler Accelerator.
The “bubble” housing the conference room in the tower of the Koffler Accelerator.
The Group at the Koffler Accelerator. From right to left: Benoit Famaey, Francoise Combes, Mordehai Milgrom and Pavel Kroupa.
The Group at the Koffler Accelerator. From right to left: Benoit Famaey, Francoise Combes, Mordehai Milgrom and Pavel Kroupa.

On this Monday Moti took us to lunch at the Lebanese restaurant Petra located in Nes-Ziona, a town 5 minutes drive from the Weizmann Institute. The Lebanese cuisine was fabulous, and I ate far too much.

 

A diversion to history

And, on Tuesday, 8th of March, Moti and his wife Ivon took us on a drive-around nearby Israel. This trip, involved about 4 hours of driving by Moti, and while driving we discussed, amongst other topics, the new study by Papastergis et al. (2016) in which they use 97 gas-dominated galaxies from the ALFALFA 21cm survey to construct their estimate of the baryonic Tully-Fisher relation showing excellent agreement with the expectations from Milgromian dynamics.

The drive was incredible, as we saw places with many thousands of years of history dating back to the Caananite peoples. It is this land which took the central role in the evolution of the Mediteranean-Sea-engulfing Roman Empire to a Christian empire. It contains the scars of the episodes of the invasion by a newer religion of christian lands, christian reconquest, and reconquest by the newer religion, till the foundation of Israel, issues which remain current to this day.

We visited Caesarea:

Caesarea, once a thriving port for many centuries, from where Paulus was imprissioned and sent to Rome for his hearing at the emperor's court, was wiped out in the 13th century.
Caesarea, once a thriving port for many centuries, from where Paulus was imprissioned and sent to Rome for his hearing at the emperor’s court, was wiped out in the 13th century.

The thriving thousand-yearold medieval city of Caesarea, named by King Herod after Octavian (i.e. Augustus Caesar) and which was once the main port in his kingdom, was finally obliterated from existence after a siege by a Mamluk army in the thirteenth century.

The ruins of Caesarea. King Herodot had his palace here.
The ruins of Caesarea. King Herod is supposed to have had his palace here.
The author amongst the ruins of Caesarea. "What was the fate of Caesarea's inhabitants when it fell to the Mamluks?"
The author amongst the ruins of Caesarea. “What was the fate of Caesarea’s inhabitants when it fell to the Mamluks?”
The Group in front of the Roman ampitheater in windy Caesarea, nearly but not quite ready.
The Group in front of the Roman ampitheater in windy Caesarea, nearly but not quite ready.
The Group in Caesarea, ready. From right to left: Mordehai Milgrom, Francoise Combes, Benoit Famaey, Pavel Kroupa.
The Group in Caesarea, ready. From right to left: Mordehai Milgrom, Francoise Combes, Benoit Famaey, Pavel Kroupa.

 

 

Acre, once a blossoming port and a gate-way to the holy lands for christian pilgrims.
Acre, once a blossoming port and a gate-way to the holy lands for christian pilgrims.

Acre: the chief port in Palestine during the crusader epoch still boasting major remains of the huge crusader’s fortress:

 

 

 

 

 

Acre: the remains of the Crusader port.
Acre: the remains of the Crusader port.
Acre was under the administration of the Knight's Hospitaller who helped arriving pilgrims and food was served in this Crusaders Refectory.
Acre was under the administration of the Knight’s Hospitaller who helped arriving pilgrims and food was served in this Crusaders Refectory.

After a wonderful dinner at the seashore between Tel Aviv and old Jaffa at the restaurant Manta Ray, where some action happened just before we arrived judging from the large number of police and other forces around, we visited very beautiful Old Jaffa:

Old Jaffa, which dates back to a history of 4000 years and where alrady the Egyptian empire stationed a garrison.
Old Jaffa, which dates back to a history of 4000 years and where alrady the Egyptian empire stationed a garrison.
Old Jaffa.
Old Jaffa.

The restoration of the archeological sites of Caesarea, Acre and of Old Jaffa brings to mind how incredibly rich and beautiful the thousand year old places are along the Mediterranean coast throughout the middle East and northern Africa, if upheld with the corresponding desire to show this history.

 

Back to science

On Wednesday, 9th of March, we spend the whole day in discussions with staff of the Institute. It began with Benoit Famaey’s presentation on the latest numerical results of modelling the Sagittarius satellite galaxy and its stream in Milgromian dynamics by Strasbourg-PhD student Guillaume Thomas. Natural solutions appear to emerge and this will, once published, clearly add spice to the discussions, given that the only solutions available in LCDM by Law & Majewski (2010) are unnatural in that the dark matter halo of the Milky Way needs to be oblate at right angle to the Milky Way, a solution which poses severe dynamical instabilities for the Milky Way disk. Notably, this polar oblate dark matter halo of the Milky Way alignes with the vast-polar structure (the VPOS) of all satellite galaxies, young halo globular clusters and stellar and gas streams.

In these discussions with the staff members during the aftenoon, we dealt with supernova rates and explosions and types in different galaxies, the relevance to the variation of the IMF in various environments (e.g. metal-poor dwarf galaxies vs metal-rich massive galaxies and the dependency of the IMF on density and metallicity), and cosmological problems such as the local massive under-density mentioned above.

An important point I tried to emphasize repeatedly is that if Milgromian dynamics is the correct description of galactic dynamics, then we must keep an open mind concerning the possibility that all of cosmological theory may have to be rewritten and the large-redshift data may need to be reinterpreted in terms of different redshift–distance and redshift–age relations.

In the evening of Wednesday I tried out the swimming pool on campus, and their sauna as well. I had access to this swimming pool by staying in The San Martin Faculty Clubhouse and the Hermann Mayer Campus Guesthouse – Maison de France. I must admit, that the day was near to being perfect with the sunshine and a closing dinner with Francoise and Benoit again in our meanwhile standard kosher restaurant (Cafe Mada) nearby the San Martin guest house.

On Thursday, 10th of March, Francoise Combes gave her interdepartmental presentation on “The Molecular Universe” which was well visited, and afterwards we went together with some staff of the Weizmann Institute for lunch at Cafe Mada, where a lively and very entertaining discussion ensued on religeos questions. In the late afternoon we joined the Whisky lounge, in which anyone traveling back to Rehovot from abroad can bring a duty-free bottle of Whisky to and donate it to this lounge.

The Local Group of galaxies is highly symmetrical, with all non-satellite dwarf galaxies lying in two planes symmetrically and equidistantly situated around the axis joining the Milky Way and Andromeda. From Pawlowski et al. (2013).
The Local Group of galaxies is highly symmetrical, with all non-satellite dwarf galaxies lying in two planes symmetrically and equidistantly situated around the axis joining the Milky Way and Andromeda. From Pawlowski et al. (2013).

Young researchers meet every Thursday (remember, this is in Israel the end of the week) to sip Whisky and thereby to elaborate on various problems, such as in our case on the local underdensity, or how the two critical constraints we have from the highly organized structure of the Local Group of galaxies and the CMB together constrain the cosmological model.

An interesting statement made was that while one needs about ten LCDM Universes to get one Bullet cluster (Kraljic & Sarkar 2015), an infinite number of LCDM Universes will not give a single Local Group with its symmetries.

At least these are some of the questions we discussed while there on this Thursday. We were also impressed by all the connections of this Department with Princeton, Caltech and Harvard.

Friday and Saturday

Shops begin to close down and it becomes a challenge to find food and Francoise left for France. In the morning I went for a swim and sauna, and for luch Benoit and myself had to go out of the Weizmann Institute (exit Main Gate and turn left) to find a sandwich place.

The Basha Bar in Tel Aviv.

 

After some work and then in the evening and at about 18:00 we decided to take a taxi to Tel Aviv. We arrived at the Basha Bar by about 18:30 and stayed for three hours (see photo).

 

The Basha Bar, enjoying a three-hour shisha smoke and many Tuborg beers.
The Basha Bar, enjoying a three-hour shisha smoke and many Tuborg beers.

On Saturday, the kosher breakfast in the guest house was as excellent as ever, but it was interesting for me to note that neither the toaster nor the coffee machine were to be used, while the water boiler was on so we could still have hot Turkish coffee (which we also drink in Bohemia, by the way, so not much new for me here). Nearly everything is closed. Benoit and myself met for lunch and walked outside the Main Gate turning right, over the bridge to reach the Science Park finding bistro Cezar for lunch.

In the evening Moti picked us up for a dinner at his home with Ivon, where we had a long discussion also on the dynamic situation in Germany, Europe and the future.

At the home of Moti in Rehovot.
At the home of Moti in Rehovot. From right to left: Moti, Benoit and the author.

 

Final comments

Benoit and myself stayed on until Monday, joining the astrophysics journal club which serves lunch at the Department on Sunday. I spent most of the afternoon discussing with Boaz Katz how star clusters may be relevant for type 1a supernovae. In the evening of Monday Benoit and I went again to Cafe Mada for a final dinner and drinks. On Monday, 14.03., we flew out around 16:00, taking a taxi to the Tel Aviv airport at 13:00 from the Department. We shared the same flight back. Again the 4+ hour long Lufthansa stretch without personal-screen-based entertainment system! But, this gave Benoit and myself a chance to further discuss at length the above mentioned Khoury condensate and the Blanchet dipoles as models for galaxy-scale MOND and cosmology-scale dark-matter-like behaviour. But I note that these are not dark matter models. During pauses my thinking was that as the coastal line of Tel Aviv receded in the setting Sun we left a small fraction of the Levant and northernmost Africa, all once pat of the Roman Empire, at a level of civilisation mirrored by the clear, brllliantly lit vast and dynamic power- and resource-hungry central-European night with full autobahns, radiant towns and illuminated football fields in nearly every village. In Frankfurt our ways parted after a last small dinner in the train station, Benoit taking a bus to Strasbourg at about 21:30, and me starting my odessey to Bonn at the same time using the available train connections (German trains all too often run late, these days).

The visit was most memorable for all of us, and Benoit and myself agree that we would like to return. We did not reach any conclusions but we came to know many new people and perhaps helped to underscore the very seriousness of alternative concepts to dark matter and the many failures of the LCDM model.

In closing it is probably fair to say that Milgrom contributed the greatest advance on gravitational physics since Newton and Einstein.

 

In The Dark Matter Crisis by Pavel Kroupa and Marcel Pawlowski. A listing of contents of all contributions is available here.

The detection of gravitational waves, predictions, MOND and my visit to the Weizmann Institut in Rehovot, Israel

The announcement on Feb.11th, 2016, that gravitational waves have been detected is a sensation and it is indeed rather incredible to imagine that space-time is constantly wobbling with and around us all the time because of some cosmic events, as is expected to be the case in Einstein’s theory of general relativity.

Imagine a wave comes though and everything gets distorted. Obviously, we will not measure a change,  since also the ruler is distorted. So the way LIGO works is to use two 4 km long rulers or measuring arms angled to each other, and to use overlapping light waves from both arms to seek the tiniest of tiniest relative changes between the two lengths. This is possible because gravitational waves are polarized.

This way and with the truly most incredibly developed hyper-sensitive length-measurement technology, the LIGO team can measure changes in relative length between the two arms that amount to 1/10000 of the diameter of a proton, or 10^-19 m.

In the announced case, two heavy stellar-mass black holes (with masses of about 29 and 36 Solar masses) coalesced about 1.3×10^9 yr ago to an about 36 Solar mass black hole plus about 3 Solar masses in radiated gravitational wave energy, leading to the detection of gravitational waves on Earth.

 

What is the source of these waves?

There are two possibilities.  The rumors that a signal with its properties had been detected by AdLIGO was already available by October 2015 as reported on The Reference Frame by Lubos Motl.

Individual massive star binaries: very fine-tuned solutions?

On Dec. 15th, 2015, Amaro-Seoane & Chen placed predictions on the likely to-be-found-by-AdLIGO  events on the arXiv arguing for massive black holes and that these circularise before coalescence due to gravitational wave emission.

One group (Marchant et al.) at Bonn University placed a paper onto the arXiv preprint server on Januray 14th, 2016, predicting essentially the particular waves which were then reported on Feb. 11th, 2016, by the LIGO team.

On Feb. 15th another group (Beczynski et al.) came up with a similar prediction.

Both of these latter contribution demonstrate that the two massive black holes orbiting each other may arise from one stellar binary system in which both stars were very massive and that this system evolved through stellar-wind-driven mass loss of both stars followed by their individual supernova explosions, to form a binary black hole system which is sufficiently tight to merge within much less than a Hubble time through the radiation of gravitational waves. From the above description it emerges that this is a highly fine-tuned problem to work out as the source of the very first observed gravitational wave emission. This scenario does have interesting consequences, namely that it leads to aligned spins of the black holes and that the kicks the black holes receive must be smaller than typically 400 km/s as emphasized by Belczynski et al.

Rather common events:  star clusters as engines for making them

But, there is another process which actually makes such black-hole merging events common, to the degree of AdLIGO (the now operating advanced LIGO observatory) observing 31 plus minus 7 such events per year.

The process begins with the birth of a massive star cluster somewhere in the universe. This massive star cluster, being typical in every respect (e.g. weighing 10^4 Mun, having a 1pc radius, with a normal stellar population), has its share of very massive stars which explode, one after another, as type II supernovae. Some of these leave a stellar-mass black hole in the cluster, which consequently and over a time of roughly 3-50 Myr builds-up a population of such black holes. These, being more massive than the stars in the cluster, sink to the centre of the cluster forming, by about 100Myr, a core of black-holes. There they meet and interact stellar-dynamically and they pair up through three-body dynamical encounters: one takes away the energy leaving two black holes in a binary. Such a binary may become tighter (i.e. it shrinks) with time because of the constant perturbations by the other cluster members. The black-hole binary “hardens” over time, until a final strong encounter with another black hole in the cluster center hardens it strongly, in which case the recoil energy may fling it out of the cluster. Independently of whether it is ejected out of its cluster, some such hard black-hole binaries may be so tight and eccentric, that their orbit shrinks due to the radiation of gravitation waves at peri-center. The binary shrinks further and circularizes, until it merges, as was observed by AdLIGO.

Because star clusters are observed everywhere in the Universe in and around galaxies, them being the building block of galaxies,  these events become common and not special. The calculations of the process described above have been published in 2010 by a Bonn-University team led by Sambaran Banerjee et al. They perform detailed stellar-dynamical computations of the above processes such that we can estimate the rate of binary black hole mergers at a given time produced by a star cluster. We can then sum up all such events from all star clusters in the Universe (since we know how many star clusters there are per galaxy approximately) to come up for the first time with such a prediction, which appears to have been nicely verified now with the AdLIGO announcement. The above mentioned rate (31±7 events per year) predicted in 2010, may be somewhat larger if less-massive star clusters are incorporated into the calculations. Low-metallicity stars leave more massive black holes, essentially because their weaker winds sweep away a smaller fraction of the star’s initial mass, and so modern stellar-evolution theory readily accounts for black holes more massive than 30 Solar masses in low-metallicity clusters which are abundant. The most massive of these black holes are most likely to dynamically interact near the star-cluster core, producing massive black-hole–black-hole binaries.

The observed rate of wave detections will test these predictions. One important aspect has been raised by Belczynski et al. above, namely that this dynamical star-cluster process predicts the black-hole spins to not be aligned, while the above stellar-binary-process does. So a given gravitational wave detection can be used to assess the particular channel of production of the pre-black-hole merger event.

 

Gravitational theories (and dark matter?):

MOND: Does the existence of gravitational waves, as predicted by the theory of general relativity, pose a problem for MOND? This is an important question to study now, since the detected signals constrain gravitational theories (a theory which does not allow gravitational waves to propagate is of course ruled out now). The detection of gravitational waves does not prove Einstein’s theory to be right, since there may be another theory which leads to the same effect.   But the detection is certainly consistent with this theory. The analysis of the signals implies that the gravitational waves are propagating with a speed which is indistinguishable form the speed of light and this constraints the mass of the graviton to be less than 2.1×10^−58 kg or 1.2×10^−22 eV/c2.

One possible interpretation of MOND is that it is a consequence of gravity being mediated by a massive graviton. Sascha Trippe at Seoul National University discusses this implications in his 2015 paper stating10^−69 kg or 10^−33 eV c−2 as being the mass of the graviton.  So this is consistent with the AdLIGO limits.

Also, the detection of gravitational waves does not prove the existence of dark matter at all, in the sense that someone may want to argue that since Einstein’s general theory predicted the waves, their verification now shows that this theory is right, and since this theory implies cold or warm dark matter particles in the standard LCDM or LWDM model of cosmology (which nearly everyone says is right but some of us _ know is ruled out by astronomical data), then dark matter must exist. This would be a false deduction.

The existence and the observed properties of gravitational waves however place important constraints on the theories of gravity which yield the classical MOND limit. Mordehai Milgrom already published a study of this issue in 2014 in PhRvD. Further research is required to test the various formulations in detail, given the observed gravitational waves and their properties.

 

The Weizmann Institute and my impending visit there:

I am visiting the Particle Physics and Astrophysics group at the Weizmann Institute in Rehovot this coming week (06.-14.03.2016), having kindly been invited by Mordehai Milgrom together with Francoise Combes and Benoit Famaey. Undoubtedly, apart from a planned sight-seeing tour through the incredibly deeply historic and beautiful lands of Israel on one day, we will of course be discussing gravitatonal wave propagation in a Milgromian Universe, as well as the most recent computational results already now obtained on various problems researched in Strasbourg and Bonn with the Phantom of Ramses computer code (the PoR code, the first PoR workshop).

 

Caveat (not to be taken seriously)

So far so good.   But there is one caveat I’d like to very carefully mention finally.

Natural science must be reproducible!  As much as we might be excited and thrilled, this is at present not given by the AdLIGO claims. Here, one team reports the detection of a transient signal with their own two observing devices. No-one can ever go back and check if the seen signal actually occurred. We have every reason to believe that the detection is true, but an independently working team would verify or independently observe such events, preferably with their own detectors. Undoubtedly this will happen, when the additional other gravitational wave observatories hopefully being comissioned soon in other countries will begin to listen to the Universe. But is is essential that independent verification be ensured. That AdLIGO is rumored to have been detecting a substantial number of additional events indeed emphasizes that the detections are occurring and that the events are common, as predicted.

 

The future

Apart from verifying by direct detection that gravitational waves exist, this is a gound-breaking event because physicists now have build new devices to probe the very fabric of space time itself. Once we have full-scale gravitational wave observatories the view we will obtain of the whole Universe is surely going to be something none of us can barely imagine today. In the past, comparable revolutions have occurred. Galileo Galilei’s first-time ever observation of heavenly objects with the first primitive telescope completely changed our world view for ever. Then, 400 years ago, no-one would have even imagined the incredibly powerfull optical observatories operating today and peering right to the beginning of time. The first-ever detection of radio waves from the heavens with the first primitive radio receivers is of a similar scale of events by leading us to the detection of the cosmic microwave background emission, which essentially is an image of the beginning of time if its physical interpretation is correct. When the first radio antennae were put up, no-one would have imagined that we will one day be able to image Solar system scales in distant galaxies, let alone view the Beginnings, as is being done routinely today. Assuming our open inquisitive, equal-human-rights, rational and non-religeous-argument based civilisation still exists, what will we be seeing with gravitational wave observatories in 100 years time?…

 

The Dark Matter Crisis by Pavel Kroupa and Marcel Pawlowski. A listing of contents of all contributions is available here.