62. Mailing list for the MOND community

(Guest post by Indranil Banik, November 22nd, 2021)

In the following guest post by Dr. Indranil Banik (past AvH Fellow in the SPODYR group at Bonn University and now at the St.Andrews University), we would like to promote a mailing list for the MOND community and anybody who is interested in this research field.

Following a request, I have set up a mailing list for the MOND community and anybody who wants to stay updated about our work. The idea is that if someone wants to advertise an upcoming talk or an article they have recently posted but they are at an early career stage and do not know everyone in the MOND community, they can just send an email to the mailing list. Also if some discussions between more senior researchers take place through this list, then any early career researchers signed up to it will be included in the conversation even if nobody thought explicitly to include them in the conversation. Regardless of whether you are signed up, you can send an email to the mailing list and everyone on it should receive the message.

The email address is: mondworkers@gmail.com

Please contact Elena Asencio if you want to sign up to this mailing list and thus receive the emails sent to it, she will be in charge of sending an invitation link which you need to accept in order to complete the sign up: s6elena@uni-bonn.de

We think it is not appropriate to send such invitation links to people who have not requested it, as such a request would take only a little time and we would not ask for any reasons for why you want to sign up.
At the moment, only a very small number of emails have been sent to the mailing list because I have only recently set it up. I envisage that it would not be used all that often for a while, and slowly catch on as more people know about it. Obviously it is not suitable for a great many emails as the sender might only want specific people to see it rather than the whole mailing list. But there are times when people want their email to gain extra visibility, and that is what this is about.

Please advertise this to especially early career researchers, it is intended for sharing adverts for upcoming talks, notifying others of articles and blogs, and discussing research ideas you want to share. In general, it is for anything you want to share with everyone on the list, including I suppose asking for advice. It is important that the more senior researchers working on MOND are signed up to it so that early career researchers who want to e.g. advertise a talk or get advice about a project manage to contact everyone on the list without knowing all their names and email addresses. In principle, a fair amount of customisation is possible with the filters that are used, and different filters can be used for different people on the list. At the moment, the only filtering in place is to prevent administrative emails being sent to everyone on the list. Requests to modify filters can be considered, and of course you can be removed from the mailing list if you ask. Thank you to those of you who have already signed up.

61. The crisis in the dark matter problem becomes a historically unparalleled failure in the scientific method

This year, Pavel Kroupa was asked to hold a Golden Webinar in Astrophysics on the dark matter problem. This contribution provides the link to the recording of this presentation which has now become available on YouTube. In this presentation, Pavel Kroupa argues that the dark matter problem has developed to become the greatest crisis in the history of science, ever. This contribution also provides links to recordings available on YouTube of previous related talks by the same speaker from 2010 (the Dark Matter Debate with Simon White in Bonn) and 2013 (in Heidelberg). This might allow some insight into how the debate and the research field have developed over the past dozen or more years.

1) Golden Webinar: “From Belief to Realism and Beauty: Given the Non-Existence of Dark Matter, how do I navigate amongst the Stars and between Galaxies?”

On April 9th, 2021, Prof. Pavel Kroupa presented a talk in the Golden Webinars in Astrophysics series on “From Belief to Realism and Beauty: Given the Non-Existence of Dark Matter, how do I navigate amongst the Stars and between Galaxies?”. The talk is now available on Youtube:

The slides to the talk without the fictitious story can be downloaded here:

If you are interested in other talks presented during The Golden Webinars in Astrophysics series, you can find the record of those already presented on their Youtube Channel, and here is a list of upcoming talks. The Golden Webinars are provided as a free public service and have no registration fees.

2) The vast polar structures around the Milky Way and Andromeda

In November 2013, Prof. Pavel Kroupa presented “The vast polar structures around the Milky Way and Andromeda” in the Heidelberg Joint Astronomical Colloquium. In the talk he discussed the failures of the Standard model of cosmology and the implications for fundamental physics.

A blog entry from 2012 on the vast polar structure (VPOS) of satellite objects around the Milky Way can be found here.

3) Bethe-Kolloquium “Dark Matter: A Debate”

In November 2010, Prof. Simon White (Max Planck Institute of Astrophysics, Garching) and Prof. Pavel Kroupa (University of Bonn) debated on the concept and existence of dark matter during the Bethe Colloquium in Bonn. Their presentations and the subsequent debate are available here:

a) Presentations by Prof. White and Prof. Kroupa

Summary of both presentations:

b) The Debate

The German-language television channel 3sat produced a TV report on the Bethe Colloquium, which can be also found on Youtube (available only in German):

Part I

Part II


In The Dark Matter Crisis by Moritz Haslbauer, Marcel Pawlowski and Pavel Kroupa. A listing of contents of all contributions is available here.

57. A splash too far: “On the absence of backsplash analogues to NGC 3109 in the ΛCDM framework”

The isolated but nearby galaxy NGC 3109 has a very high radial velocity compared to ΛCDM expectations, that is, it is moving away from the Local Group rapidly, as shown by Peebles (2017) and Banik & Zhao (2018). One of the few possible explanations within this framework is that NGC 3109 was once located within the virial radius of the Milky Way or Andromeda, before being flung out at high velocity in a three-body interaction with e.g. a massive satellite. In the new research paper “On the absence of backsplash analogues to NGC 3109 in the ΛCDM framework”, which was led by Dr. Indranil Banik, it is shown that such a backsplash galaxy is extremely unlikely within the ΛCDM framework. Basically, such galaxies cannot occur in ΛCDM because they ought to be slowed-down due to Chandrasekhar dynamical friction exerted on NGC 3109 and its own dark matter halo by the massive and extended dark matter halo of the Milky way. Making it worse, NGC 3109 is in a thin plane of five associated galaxies (the “NGC 3109 association”, rms height 53 kpc; diameter 1.2 Mpc), all of which are moving away from the Local Group (Pawlowski & McGaugh 2014), whereby the dynamical friction ought to slow down the galaxies in dependence of their dark matter halo masses. This makes its thin planar structure today unexplainable in ΛCDM.

Interestingly, the backsplash scenario is favoured by the authors (Banik et al. 2021), but in the context of MOND. In this theory, much more powerful backsplash events are possible for dwarf galaxies near the spacetime location of the past Milky Way-Andromeda flyby because in MOND galaxies do not have dark matter halos made of particles. A galaxy thus orbits through the potential of another galaxy unhindered and ballistically. The envisioned flyby could also explain the otherwise mysterious satellite galaxy planes which are found around the Milky Way and Andromeda. It now seems that the flyby may well be the only way to explain the properties of NGC 3109, since a less powerful three-body interaction is just not strong enough to affect its velocity as much as would be required. But a Milky Way-Andromeda flyby is not possible in ΛCDM as their overlapping dark matter halos would merge.

In a series of Tweets, the co-author Dr. Marcel Pawlowski briefly explains on his Twitter account @8minutesold the main results of this recent publication:

Source: https://twitter.com/8minutesold/status/1392430171240677376

Source: https://twitter.com/8minutesold/status/1392430171240677376


In The Dark Matter Crisis by Moritz Haslbauer, Marcel Pawlowski and Pavel Kroupa. A listing of contents of all contributions is available here.

52. Solving both crises in cosmology: the KBC-void and the Hubble-Tension

(by Moritz Haslbauer, 20th Nov. 2020, 18:00)

A directly-related presentation by Moritz Haslbauer and Indranil Banik on the KBC-void and the Hubble tension in the ΛCDM model and Milgromian dynamics can found on the Youtube Channel “Cosmology Talks” by Shaun Hotchkiss: Maybe Milgromian gravity solves the Hubble tension!? – The KBC void & νHDM model (Haslbauer & Banik)

The Universe evolves through expansion and gravitation of matter, which leads to some regions having more galaxies and others having fewer. These variations directly reflect the way in which gravity has created structures out of initial density fluctuations over the last 14 billion years. Thus, the observed spatial arrangement of galaxies on scales ranging from 100 kpc to a Gpc is a very powerful test of different cosmological models and gravitational theories.

In our paper “The KBC void and Hubble tension contradict ΛCDM on a Gpc scale − Milgromian dynamics as a possible solution” (Moritz Haslbauer, Indranil Banik, Pavel Kroupa 2020), we tested if the observed spatial arrangement of galaxies on a Gpc scale can be explained by the standard model (Lambda-Cold Dark Matter, ΛCDM) of cosmology. We also tested if a Milgromian dynamics (MOND) model works.

Several surveys covering the entire electromagnetic spectrum (ranging from radio to X-rays) made an exciting discovery: we are in a Gpc-sized region of the Universe containing far fewer galaxies than ought to be in this volume if ΛCDM were correct.

For example, Karachentsev 2012 found a significant lack of galaxies within a sphere of radius 50 Mpc centered on the Local Group. He reported that the average mass density is a factor of 3-4 lower than predicted by the standard model of cosmology. In 2013, Keenan, Barger, and Cowie discovered that the local Universe is underdense on a much larger scale by counting galaxies at near-infrared wavelengths. They found evidence for an incredibly huge void (hereafter the KBC void) with a density about two times lower than the cosmic mean density and with a radius of about one billion light years (or 300 Mpc). This is about 2% of the distance to the observable Universe’s horizon (about 14 Gpc). The KBC void is shown in Figure 1 below.

Figure 1. The KBC void: the actual density of normal matter divided by the mean cosmological density is plotted in dependence of the distance from the position of the Sun (which is in the Local Group of galaxies). The grey area indicates the density fluctuations allowed by the ΛCDM model. Taken from fig. 1 in Kroupa (2015).

The results by KBC are striking because the ΛCDM model predicts root-mean-square (rms) density fluctuations of only 0.032, while the observed value is 0.46 with an uncertainty of 0.06. This drew our attention, so we decided to investigate the local matter field further in both the ΛCDM and MOND paradigms.

First, we started to quantify the likelihood of a KBC-like void in the ΛCDM model. Using one of the largest cosmological ΛCDM simulations (called MXXL), we rigorously confirmed our suspicion: Einsteinian/Newtonian gravity is simply too weak to form such deep and extended underdensities like the KBC void. Our calculations showed that the KBC void alone falsifies ΛCDM with a significance much higher than the typical threshold used to claim a discovery, e.g. with the famous Higgs boson. Consequently, the KBC void is totally inconsistent with the current standard model, implying that the observed Universe is much more structured and organized than predicted by ΛCDM. A similar conclusion was reached by Peebles & Nusser 2010 on much smaller scales by studying the galaxy distribution within the Local Volume, a sphere with 8 Mpc radius centred on the Local Group. And the whole Local Group is also “grievously” structured (Pawlowski, Kroupa, Jerjen 2013), showing a “frightening symmetry” as called by Pavel Kroupa.

The implications of the observed local density contrast on a Gpc scale are far-reaching, because so far it was widely understood that the ΛCDM paradigm provides a very successful description on this scale. Given the many failures of ΛCDM on galaxy scales (e.g. Kormendy et al. 2010 , Kroupa et al. 2010, Kroupa 2012, Kroupa 2015, Pawlowski et al. 2015), the ΛCDM model now faces significant problems across all astronomical scales. A compilation of failures, many of which have reached the 5sigma confidence threshold of ΛCDM failure, can be found in the previous contribution to the Dark Matter Crisis.

The observed spatial arrangement of galaxies on scales ranging from 100 kpc (the satellite planes) to 300 Mpc (our work) strongly suggests that structure formation is much more efficient than possible by Newton’s gravitational law, implying a long-range enhancement to gravity over that allowed by Newtonian gravity. This is in fact not surprising, given that Newton and Einstein both only had Solar System data at their disposal to formulate their theories; gravitation is after all, the least understood of the fundamental interactions. Consequently, we next studied the formation of structures in Milgromian dynamics, which was developed by Israeli physicist Mordehai Milgrom in 1983 (Milgrom 1983). MOND is a corrected version of Newtonian gravitation taking into account galaxy data which were non-existing for Newton and for Einstein. MOND successfully predicted many galaxy scaling relations, but has rarely been applied to cosmological scales.

We extrapolated the MOND model from galactic to a Gpc scale by applying the Angus 2009 cosmological MOND model. This Angus cosmological model has a standard expansion history, primordial abundances of light elements, and fluctuations in the cosmic microwave background (CMB), mainly because both the ΛCDM and MOND cosmology have the same mass-energy budget. However, instead of cold dark matter particles, the MOND model assumes fast-moving collisionless matter, most plausibly in the form of 11eV/c^2 sterile neutrinos. The existence of sterile neutrinos is motivated by particle physics, since they could explain why the ordinary neutrinos have mass. The low mass of hypothetical sterile neutrinos means they would clump on large scales (e.g. galaxy clusters), but not in galaxies, thus leaving their rotation curves unaffected. The following is in fact a most important point to emphasize: The Angus cosmological model needs extra fast moving matter which comes from standard particle physics (but still needs to be verified experimentally). This is very different to the ΛCDM model which needs dark matter particles that account for the observed rotation curves in disk galaxies but which are not motivated to exist by the standard model of particle physics.

The enhanced growth of structure in Milgromian gravitation generates much larger and deeper voids than in Einsteinian/Newtonian gravity. This leads to the formation of KBC-like voids as shown in our paper. Such an extended and deep underdensity causes an interesting effect: parts of the Universe beyond the void with more galaxies pull galaxies in the void outwards. This changes the motions of galaxies, making the local Universe appear to expand faster than it actually is. The situation is illustrated in Figure 2.

Figure 2: Illustration of the Universe’s large scale structure. The darker regions are voids, and the bright dots represent galaxies. The yellow star represents the position of our Sun. Note that the Sun is not at the centre of the KBC void. The arrows show how gravity from surrounding denser regions pulls outwards on galaxies in a void. If we were living in such a void, the Universe would appear to expand faster locally than it does on average. This could explain the Hubble tension. Interestingly, a large local void is evident in the entire electromagnetic spectrum. Credit: Technology Review

Indeed, local observations of how quickly the Universe is expanding exceed the prediction of ΛCDM by about 9%. This so-called Hubble tension is one of the greatest mysteries in contemporary cosmology. In our paper we showed that the unexpectedly high locally measured Hubble constant is just a logical consequence of enhanced structure formation in MOND, and us residing within a particularly deep and large void. This Hubble bubble scenario is however not consistent with ΛCDM because it does not allow for a sufficiently extreme void (Figure 3).

Figure 3: In our paper we showed that that the KBC void cannot form out of the initial conditions of the CMB at redshift z = 1100 if Einsteinian/Newtonian gravity is assumed. Adding the speculative cold dark matter does not help. Therefore, the Hubble tension cannot be explained by the KBC void in the context of the ΛCDM paradigm. Consequently, we aimed to study the formation of structures in Milgromian dynamics. The long-range enhancement to gravity in MOND allows the formation of KBC-like voids, which simultaneously explains the high locally measured Hubble constant.

Thus, the current hot debate among astronomers about the expansion of the Universe being different close to us than far away only exists because astronomers are using the wrong model. A universe which does not have exotic cold dark matter particles but runs on Milgromian gravitation ends up looking just like the real Universe, at least with the tests done thus far.

There is now a real prospect of obtaining a MOND theory of cosmology that explains the data from dwarf galaxies up to the largest structures in the Universe much better than the ΛCDM framework. Consequently, the here described cosmological MOND framework could be a way out of the current crisis in cosmology.

Given my affiliation with Charles University, I have been travelling to Prague and beyond frequently and now the CORONA Pandemic has stopped this flying about the planet — I have already written about the first wave and my getting marooned on a beautiful island next to the Strand. Being this time stranded in Bonn without a Strand during the second wave, I have a little more time on my hands I guess. So here we are, back to the Crisis.

In The Dark Matter Crisis by Moritz Haslbauer, Marcel Pawlowski and Pavel Kroupa. A listing of contents of all contributions is available here.