Dynamics of Local Group galaxies: Evidence for a past Milky Way–Andromeda Flyby?

Indranil_BanikThe following is a guest post by Indranil Banik. Indranil is a PHD student at the University of Saint Andrews, part of the Scottish Universities’ Physics Alliance. He was born in Kolkata, India and moved to the UK with his parents a few years later. Indranil works on conducting tests to try and distinguish between standard and modified gravity, especially by considering the Local Group. Before starting his PhD in autumn 2014, he obtained an undergraduate and a Masters degree from the University of Cambridge with top grades. There, he worked on understanding the dynamics of ice shelves, and on a Masters project on the thick disk of the Milky Way, as well as on a few other problems.

Figure_1I recently won the Duncombe Prize from the American Astronomical Society’s Division on Dynamical Astronomy for a detailed investigation into the Local Group timing argument. This was to present a recently accepted scientific publication of mine (link at bottom of article) at their annual conference in Nashville, Tennessee.

The timing argument takes advantage of the fact that the Universe has a finite age of just under 14 billion years. Thus, everything we see must have started at a single point at that time, which we call the Big Bang. Due to the finite speed of light, by looking very far away, we are able to look back in time. In this way, we observe that, shortly after the Big Bang, the Universe was uniform to about one part in 100,000. Thus, we know that the expansion of the Universe was very nearly homogeneous at early times. This means that any two objects were moving away from each other with a speed almost proportional to the distance between them. This is called the Hubble law.Figure_2new

The Hubble law also works today, but only on large scales. On small scales, the expansion of the Universe is no longer homogeneous because gravity has had a long time to change the velocities of objects. As a result, our galaxy (the Milky Way, MW for short) and its nearest major galaxy, Andromeda (or M31) are currently approaching each other. This implies that there must have been a certain amount of gravitational pull between the MW and M31.

Although this has been quantified carefully for nearly 60 years, my contribution involves analysing the effects of the MW and M31 on the rest of the Local Group (LG), the region of the Universe where gravity from these objects dominates (out to about 10 million light years from Earth). Recently, a large number of LG dwarf galaxies have been discovered or had their velocity measured for the first time (McConnachie, 2012). We took advantage of this using a careful analysis.

We treated the MW and M31 as two separate masses and found a trajectory for them consistent with their presently observed separation. We treated the other LG dwarf galaxies as massless, which should be valid as they are much fainter than the MW or M31. For each LG dwarf, we obtained a test particle trajectory whose final position (i.e. at the present time) matches the observed position of the dwarf. The velocity of this test particle is the model prediction for the velocity of that galaxy.

Figure_3The basic feature of the model is that the expansion of the Universe has been slowed down locally by gravity from the MW and M31. At long range (beyond 3 Mpc or about 10 million light years), this effect is very small and so objects at those distances should essentially just be following the Hubble law. But closer to home, the results of this model are clear: the MW and M31 are holding back the expansion of the Universe, and objects within about 1.5 Mpc should be approaching us rather than moving away (see figure above). By comparing the detailed predictions of our model with observations, we were able to show that, for all plausible MW and M31 masses, a significant discrepancy remains. This is because a number of LG galaxies are flying away from us much faster than expected in the model.

An important aspect of these models is that the MW and M31 have never approached each other closely. Although one can in principle get them to have a past close flyby in Newtonian gravity if they are assigned very high masses, there are several problems with this. Such high masses are unreasonable given other evidence. More importantly, if there had been such a flyby, the dark matter halos of the MW and M31 would have overlapped, leading to a substantial amount of friction (of a type called dynamical friction, which is reliant only on gravity). This would have caused the galaxies to merge, contradicting the fact that they are now 2.5 million light years apart.

I was aware of an alternative model for galaxies called Modified Newtonian Dynamics (MOND – Milgrom, 1983). This is designed to address the fact that galaxies rotate much faster than one would expect if applying Newtonian dynamics to their distributions of visible mass. The conventional explanation is that galaxies are held together by the extra gravitational force provided by a vast amount of invisible dark matter. Many galaxies need much more dark matter than the amount of actually observed matter. But, so far, this dark matter has not been detected directly. What MOND does is to increase the gravitational effect of the visible matter so that it is enough to explain the observed fast rates of rotation. In this model, there is no longer any need for dark matter, at least in halos around individual galaxies. You can find out more about MOND here on McGaugh’s MOND pages and here on Scholarpedia.

Figure_4In MOND, the MW and M31 must have undergone a past close flyby (Zhao et al, 2013). In this model, the absence of dark matter halos around galaxies means that there need not have been any dynamical friction during the flyby (remember that the disks of the MW and M31 are much smaller than their hypothetical dark matter halos, which are only needed if we apply Newton’s law of gravity).

The high relative speed of the MW and M31 at this time (about 9 billion years ago) would probably go a long way towards explaining these puzzling observations. This is because of a mechanism called gravitational slingshots, similar to how NASA was able to get the Voyager probes to gain a substantial amount of energy each time they visited one of the giant planets in our Solar System. The idea in this case would be for the MW/M31 to play the role of the planet and of a passing LG dwarf galaxy to play the role of the spacecraft.

Figure_5

This mechanism is illustrated in the figure above. In the left panel, there is a small galaxy moving at 1 km/s while a much heavier galaxy moving at 5 km/s catches up with it. The massive galaxy sees the dwarf approaching at 4 km/s (right panel). The trajectory of the dwarf is then deviated strongly, so it ends up receding at 4 km/s back in the direction it approached from. Combined with the velocity of the massive galaxy (which is almost unchanged), we see that the velocity of the dwarf has been increased to 5 + 4 = 9 km/s.

We do in fact observe many LG dwarf galaxies moving away from us much faster than in the best-fitting dark matter-based model (see figure below, observed radial velocities are on the y-axis while model-predicted ones are on the x-axis). Moreover, based on the distances and velocities of these objects, we can estimate roughly when they would have been flung out by the MW/M31. This suggests a time approximately 9 billion years ago, which is also when one expects the MW and M31 to have been moving very fast relative to each other in MOND as they were close together.

Figure_6

These high-velocity LG dwarfs would have been flung out most efficiently in a direction parallel to the velocity of whichever heavy galaxy they interacted with. Naturally, the MW and M31 have not always been moving in the same direction. But it is very likely that they were always moving within much the same plane. Thus, one test of this scenario (suggested by Marcel Pawlowski) is that these high-velocity dwarfs should preferentially lie within the same plane.

There is some evidence that this is indeed the case. Moreover, the particular plane preferred by these objects is almost the same as what would be required to explain the distribution of satellite galaxies around the MW and M31. This is described in more detail towards the end of this lecture I gave recently about my work.

Even without this evidence, there is a strong case for MOND. One of the astronomers heavily involved in making this case is Professor Stacy McGaugh. I was very pleased to meet him at this conference. We discussed a little about his current work, which focuses on using rotation curves of galaxies to estimate forces within them. For a modified gravity theory which does away with the need for dark matter, it is important that these forces can be produced by the visible matter alone. Stacy was doing a more careful investigation into estimating the masses of galaxies from their observed luminosities and colours (which give an idea of the mix of different types of star in each galaxy, each of which has its own ratio between mass and luminosity, old stars being red and young ones blue). The success enjoyed by MOND in explaining dozens of rotation curves is one of the major reasons the theory enjoys as much support as it does.

This brought us on to discussing how we came to favour the theory over the conventional cosmological model (ΛCDM) involving Newtonian gravity and its consequent dark matter. Stacy explained how it was particularly his work on low surface brightness galaxies which convinced him. This is because such galaxies were not known about when the equations governing MOND were written down (in the early 1980s). Despite this, they seemed able to predict future observations very well. This was somewhat surprising given that the theory predicted very large deviations from Newtonian gravity. In the ΛCDM context, the presence of large amounts of invisible mass makes it difficult to know what to expect. As a result, it is difficult for the theory to explain observations indicating a very tight coupling between forces in galaxies and the distribution of their visible mass – even when most of the mass is supposedly invisible (a feature called Renzo’s Rule). A broader overview of what the observations seem to be telling us is available here (Famaey & McGaugh 2012) and here (Kroupa 2015).

I then explained my own thinking on the issue. I was aware of some of the observations which persuaded Stacy to favour MOND and I was aware of the theory, but I did not favour it over ΛCDM. Personally, what got me interested in seriously considering alternatives to ΛCDM was its missing satellites problem. The theory predicts a large number of satellite galaxies around the MW, much larger than the observed number. Although it is unclear if MOND would help with this problem, that does seem likely because structure formation should proceed more efficiently under the modified gravity law. This should lead to more concentration of matter into objects like the MW with less being left over for its satellites.

Although this suggested MOND might be better than ΛCDM, my initial reaction was to consider warm dark matter models. Essentially, if the dark matter particles were much less massive than previously thought (but the total mass in the particles was the same), then they would behave slightly differently. These differences would lead to less efficient structure formation at low masses, reducing the frequency of low-mass halos and thus making for less satellite galaxies. I hoped this would explain a related problem, the cusp-core challenge which pertains to the inner structure of satellite galaxies.

What finally convinced me against such minor alterations to ΛCDM and in favour of MOND was the spatial arrangement and internal properties of the MW and M31 satellite galaxies. Much has been written in previous posts to this blog about this issue (for example, here), with this 2005 paper by Kroupa, Theis & Boily pointing out the discrepancy between observations and models for the first time.

Figure_7I have summarised the results in a flowchart (left). Essentially, the hypothetical dark matter halos around the MW and M31 need to be distributed in a roughly spherical way. This is unlike the disks of normal (baryonic) matter in these galaxies. The reason is that baryons can radiate and cool, allowing them to settle into disks. As a result, in an interaction between two galaxies, the baryons with their ordered circular motions in a disk can get drawn out into a long dense tidal tail that then collapses into small tidal dwarf galaxies. But these would be free of dark matter, and they would also be mostly located close to a plane: the common orbital plane of the interacting galaxies. You can see more about this scenario here.

The argument goes that it is difficult to form such planes of satellites in any other way (for example, see Pawlowski et al, 2014). Just such satellite planes are in fact observed around both the MW and M31. Supposedly free of dark matter, they should have quite weak self-gravity and thus low internal velocity dispersions/rotate very slowly. Yet, their observed velocity dispersions are quite high, signalling the need for some extra force to stop them flying apart.

Because the spatial arrangement of these satellites suggests a violent origin, it is unlikely that they have much dark matter. Thus, I became convinced of the need to modify our understanding of gravity. It turns out that exactly the same modification that can help explain galaxy rotation curves without dark matter could also help address this problem (McGaugh & Milgrom, 2013). Although the dark matter plus Newtonian gravity worldview might just about be able to explain galaxy rotation curves (although detailed tests are showing this not to have succeeded: Wu & Kroupa 2015), I do not think it can explain the satellite plane problem. This eventually convinced me to investigate this issue further. I explain some of the more compelling reasons for favouring MOND over ΛCDM in this lecture I gave recently.

The paper for which I won the Duncombe Prize is available here: http://arxiv.org/abs/1506.07569

The peer-reviewed version has appeared in the Monthly Notices of the Royal Astronomical Society, volume 459, issue 2, pages 2237 to 2261.

Advertisements

The Planck Results on the Cosmic Microwave Background

Guest contribution by Behnam Javanmardi

Prologue by Pavel Kroupa:

The much awaited Planck results on the CMB have been published recently. The results are consistent with those arrived at by using Wilkinson Microwave Anisotropy Probe (WMAP) measurements.

https://i0.wp.com/sci.esa.int/science-e-media/img/62/Compo_CMB_Planck_WMAP_v1_3k.jpg
Date: 20 Mar 2013
Satellite: Planck
Depicts: Cosmic Microwave Background
Copyright: ESA and the Planck Collaboration; NASA / WMAP Science Team: “This image shows temperature fluctuations in the Cosmic Microwave Background as seen by ESA’s Planck satellite (upper right half) and by its predecessor, NASA’s Wilkinson Microwave Anisotropy Probe (WMAP; lower left half) A smaller portion of the sky is highlighted in the all-sky map and shown in detail below. With greater resolution and sensitivity over nine frequency channels, Planck has delivered the most precise image so far of the Cosmic Microwave Background, allowing cosmologists to scrutinise a huge variety of models for the origin and evolution of the cosmos. The Planck image is based on data collected over the first 15.5 months of the mission; the WMAP image is based on nine years of data.”

This agreement is excellent news, because it means that the two missions are consistent and thus the Planck data enhance our confidence in what we know about the CMB.

But, what do the results mean in terms of our physical understanding of the universe?

In this guest contribution by PhD student Behnam Javanmardi, who is studying cosmological models in Bonn since the Fall of 2012, some of the problems raised by the Planck CMB map are discussed:

Behnam Javanmardi, Bonn, 19.04.2013

Contribution by Behnam Javanmardi:

The European Space Agency (ESA) launched the Planck satellite on 14 May 2009 to the second Lagrange point of the Sun-Earth system (L2), at a distance of 1.5 million kilometers from the Earth, for observing the Cosmic Microwave Background (CMB), the afterglow of the Big Bang. On 21 March 2013, the Planck collaboration released the data with a series of papers on their scientific findings. Planck observed the CMB sky in different frequency bands, some of which are sensitive to the foregrounds (anything between us and that cosmic radiation, e.g. the disk of the Milky Way). This allows to remove the foregrounds and reach to an image of the Universe when it was very young.

Statistical analysis of this image (which shows small temperature fluctuations corresponding to small density contrasts at that time) gives us valuable information about our Universe. In the following, some major Planck’s results are reviewed with the main focus on the problems cosmologists now face, given these results. Technical details can be found in the Planck 2013 Results Papers.

The current Standard Cosmological Model (ΛCDM) has a set of parameters and the Planck collaboration reported the values for these parameters by fitting the model to the data. For example, the best fit ΛCDM parameters resulted in a 6% lower value for the density parameter of dark energy (Planck: ΩL=0.686±0.020 vs WMAP-9: ΩL=0.721±0.025) and an 18% higher value for the density parameter of dark matter (Planck: Ωm=0.314±0.020 vs WMAP-9: Ωm=0.279±0.025) than the results of the previous all sky CMB survey, i.e. WMAP. As can be seen from these numbers, the two parameters are consistent with each other within the measurment uncertainties. Thus, the Planck mission has nicely confirmed the WMAP fit to the standard model of cosmology.

https://i1.wp.com/sci.esa.int/science-e-media/img/67/Planck_anomalies_Bianchi_on_CMB_orig.jpg
Date: 21 Mar 2013
Satellite: Planck
Copyright: ESA and the Planck Collaboration: “Two Cosmic Microwave Background anomalous features hinted at by Planck’s predecessor, NASA’s Wilkinson Microwave Anisotropy Probe (WMAP), are confirmed in the new high precision data from Planck. One is an asymmetry in the average temperatures on opposite hemispheres of the sky (indicated by the curved line), with slightly higher average temperatures in the southern ecliptic hemisphere and slightly lower average temperatures in the northern ecliptic hemisphere. This runs counter to the prediction made by the standard model that the Universe should be broadly similar in any direction we look. There is also a cold spot that extends over a patch of sky that is much larger than expected (circled). In this image the anomalous regions have been enhanced with red and blue shading to make them more clearly visible”.

The main interesting result from Planck was the confirmation of some features that have been revealed by WMAP data. Before Planck, there were some doubts about the cosmic origin of these features, but since the precision of Planck’s map is much higher than that of WMAP and the Planck collaboration was working nearly 3 years to carefully extract any foreground emission and those features are still present, we have to accept with a much higher confidence that these may be real features of the CMB sky.

These features or anomalies, which the standard model of cosmology did not expect, are significant deviations from large scale isotropy. But large scale isotropy is one of the two fundamental assumptions that form the Cosmological Principle and simply states that the Universe we observe must not be direction-dependent. Among these features found in the CMB one can mention a “Cold Spot” which is a low-temperature region much larger than expected. And, a “Hemispherical Asymmetry” has been detected: the northern ecliptic hemisphere has on average a significantly lower signal than the southern one. The latter leads to this question: why is the orientation of this asymmetry more or less aligned with the orbital angular momentum of the Earth? Is it a not-yet understood measurement bias or a data reduction bias or a coincidence? As the Earth orbits the Sun, its orbital angular momentum remains pointing into the same direction in the Milky Way. Perhaps a remnant Milky Way foreground contamination may play a role here.

The other assumption of the cosmological principle, i.e. that the initial temperature (and density) fluctuations had Gaussian distribution, has also been tested by the Planck collaboration and no significant deviation from it was reported, except for a few signatures which were interpreted to be associated with the above-mentioned anomalies.

Furthermore, the power-spectrum calculated using the Planck data (which is one of the main statistical tools for analyzing the CMB map) has a ≈2.7σ deviation from the “best fit ΛCDM model” at low-ℓ (ℓ ≤ 30) multipoles or large angular scales.

Regarding the test of inflation (a hypothesis which says that the early Universe was inflated by a factor of at least 10^(78) in less than 10^(-36) seconds), the models with only one scalar field are preferred by the Planck results and more complex inflationary scenarios do not survive. However, a recent paper by Ijjas et al (2013)  has gone through the problems of inflation considering the results from both the Planck satellite and the LHC,

The odd situation after Planck2013 is that inflation is only favored for a special class of models that is exponentially unlikely according to the inner logic of the inflationary paradigm itself

as they mention. The forthcoming results on polarization of the CMB from Planck will cast light on this issue.

As mentioned above, although the ΛCDM model is consistent with the overall picture as seen by Planck, it fails to account for these observed anomalies and the deviation of the power-spectrum at large scales. In addition, the three major elements of the ΛCDM model, i.e. dark matter, dark energy and inflation, still lack a firm theoretical understanding. Therefore, cosmologist should try to look for a model in which the recent observed features are no longer “anomalies” and are predicted by the model itself.

Epilogue by Pavel Kroupa:

The Planck data thus demonstrate that not all is well with our understanding of cosmology, that is, the CMB poses hitherto unanswered problems.  But even if the CMB had been in perfect agreement with the expectations from the current standard model of cosmology, what would this have implied for our physical understanding of cosmology?

First of all, an elementary if not trivial truth is that consistency of a model with a set of data does not prove the model. Thus, claiming that Planck establishes the existence of (cold or warm) dark matter and dark energy would be an unscientific statement. For example, the cosmological model by Angus & Diaferio (2011, see their fig.1)shows that the CMB can be reproduced with a non-CDM/WDM model, therewith proving the non-uniqueness of the models.

Furthermore, irrespective of any success or failure of the standard (or any other) cosmological model in reproducing some large-scale data, the highly significant problems encountered on the local cosmological scale of 100Mpc and below remain hard facts to be solved: See

Behnam Javanmardi’s final statement above,

“Therefore, cosmologist should try to look for a model in which the recent observed features are no longer “anomalies” and are predicted by the model itself.”,

emphasises that cosmology is one of the least understood of the physical sciences.

By Behnam Javanmardi and Pavel Kroupa  (22.04.2013): “The Planck results on the cosmic Microwave background” on SciLogs. See the overview of topics in The Dark Matter Crisis.

Scott Dodelson on dark matter and modified gravity (guest post)

Following the recent incident, we and the SciLogs team decided to invite a renown colleague to write a guest blog post. Thinking about possible guest bloggers who are experts in the field of cosmology and approach theories such as MOND with the necessary scientific skepticism, we arrived at Scott Dodelson as one candidate.

Scott is a very well-respected cosmologist. He is a scientist at Fermilab and  a professor in the Department of Astronomy and Astrophysics and the Kavli Institute for Cosmological Physics at the University of Chicago. His research focuses on the largest and smallest scales of the universe: the interplay of cosmology and particle physics. He investigates the nature of dark matter and dark energy, works on the cosmic microwave background and is also interested in modified gravity theories. In addition to his many papers, he has written the textbook “Modern Cosmology”.

We are very pleased that Scott Dodelson has accepted to write this guest post. Thank you, Scott!

 

Is modified gravity a viable alternative to dark matter? Or is dark matter so compelling that pursuits of modified gravity should be abandoned?

There are good reasons to believe in dark matter and to be optimistic about our chances of detecting it in the coming decade. Dark matter explains the flat rotation curves in galaxies; it accounts for the deflection of light far from the centers of galaxies and by galaxy clusters. Many aspects of galaxy clusters make sense only if dark matter is present. Perhaps most importantly, it is the key component in our modern story of how we got here: the standard cosmological model is called CDM or “Cold Dark Matter”. The small inhomogeneities captured in maps of the cosmic microwave background (CMB) grew to be the vast structure we see today via gravitational instability, but the story holds together only if dark matter is also present. The story works and it has been tested by observing the spectra of both the CMB and the distribution of matter on large scales. It is true that dark matter does not easily explain some phenomena on small scales, but there is a ready explanation for this: predictions on small scales are hard. Apart from the non-linearity of gravity, baryons play an important role on small scales, and incorporating these effects into numerical simulations is challenging. It is easiest to make predictions on large scales and those easy predictions have been confirmed with exquisite precision. Beyond all this lies the suite of experiments poised to detect dark matter. Thousands of scientists are now hunting for the particles that comprise dark matter by studying collisions at the LHC; by manning underground laboratories designed to detect it; and by launching satellites to observe the debris created when two dark matter particles in space collide and annihilate. We have reason to be optimistic.

Why then pursue modified gravity?

First, the people who study modified gravity (MG) tend to focus on small scale data rather than large scale data. They are serious, smart  scientists who make observations and fit MG models to the data. These fits tend to be pretty good,  often with very few free parameters and therefore the scientists gain confidence in their models. This focus on different data or different slices through the data presents a challenge to the dark matter model. Eventually, dark matter will have to explain these data sets as well. Slicing and combining things in different ways leads to different challenges than might otherwise arise. Even if you believe in dark matter, you want to confront the data in all forms. The simple (slightly condescending) way of saying this is to say that CDM must ultimately reduce to MONDian phenomenology on small scales.

More importantly, dark matter has not yet been detected. This is not the time to raise the barriers and decree that only those who accept dark matter are serious scientists. We are optimistic, but we have to accept the possibility that dark matter will not be detected in the next decade. Our initial feedback from the LHC shows no hint for the simplest model that contains dark matter, supersymmetry (although these early data are certainly not conclusive). There have been hints in direct and indirect detection experiments, but certainly nothing definitive. It is possible that we will need to think of something completely new. In so doing we are going to have to drop some assumptions, weight evidence differently than we do now. The MG community does this now by downweighting large scale data and focusing more on small scales. This may end up being the correct approach, or we may need to think of something even more radical. I do not know how to do this (How do we encourage a revolution?) but I am pretty sure suppressing alternatives is moving in the wrong direction.

The communities now are quite disparate and find it difficult to engage one another. Is the MG vs. dark matter dispute identical to the disagreements between people from different religions, say, virtually impossible to resolve because the two sides cannot communicate? Certainly not. We are scientists, and facts will change our minds. Some examples of things the vast majority of the MG community accepts or will accept:

  1. MG is not theoretically favored over dark matter because “dark matter is something new”. Both approaches are changing the fundamental lagrangian of nature by adding new terms and new degrees of freedom.
  2. The fact that Xenon100 or Fermi (or perhaps AMS in a few days) has not seen dark matter does not mean the theory is excluded. There is plenty of room in theories like supersymmetry and even more in other more generic models.
  3. If dark matter is detected unambiguously via direct and/or indirect detection, then MG would indeed fall outside the realm of reasonable scientific investigation.

On the other hand, our dispute does share similarities with those that divide adherents of religion. We are passionate, we come at things from different directions with different preconceptions, so it is sometimes difficult to speak the same language, to focus on a single question. At the end of the day, just like the devout in different religious traditions, we are all after the same goal, in our case, trying to understand nature. It is premature to state that our way is the only way.

 

Guest post by Scott Dodelson (07.03.2013): “Is modified gravity a viable alternative to dark matter? Or is dark matter so compelling that pursuits of modified gravity should be abandoned?”.