65. The Don’t-Look-Up Syndrome of Cosmology: Chicago Cosmologists at their best; and the Hubble Tension does not exist

(by Pavel Kroupa, Friday 21st January 2022)

We humans are, as any living creature, and by necessity, conservative beings. We need to be, since typically most of us prefer to sustain their comfortable arrangements. The cave person will prefer to stay near their cave if the nearby plains below are full of fodder, and they would kill off threats. The cosmologist prefers to stay with their dark matter that made them big and important. So when a comet/climate crisis is discovered to approach Earth and is calculated, with some margin or uncertainty, that it will extinguish known life, it can be easier for the majority to just ignore this and to trust in everything turning out all right in the end. Keep the high spirits up, don’t worry and keep smiling and do not frown, do not spoil the mood by doomsday blubber, don’t look up to the threat. So let us ignore that the temperature of the oceans has already increased by nearly 2 degrees centigrade and that another increase by three will kill off most plankton as shown by Sekerci & Petrovskii (2018) with Earth’s atmosphere consequently running out of oxygen.

What has this to do with modern cosmology? I would claim: everything. The modern, successful homo cosmologicus vehemently defends their dark matter against all odds, even if it means killing the scientific method (testing and falsification of hypotheses using reproducible logical methods); they resist change to their habitat as long as the vast landscape of rewards, awards, grants and riches remains abundant.

On Friday, January 14th, 2022, I watched the Golden Webinar on the Hubble Tension, and on this same Friday there appeared on the arXiv an Annual Review on cosmology. Both scientists (speaker and author) are from the highbrow Kavli Institute for Cosmological Physics at the University of Chicago, and both contributions I found to be remarkable.

In the Golden Webinar on “Tension in the Hubble Constant – Does it mean new Physics?“, the speaker very nicely explained the measurements of the Hubble constant using different distance ladders and which role the uncertainties play. Three points struck me: (1) The speaker declared that the physical reason for the Hubble Tension remains unknown. (2) The speaker declared there to be no other known major tension between observations and the Standard Model of Cosmology (the SMoC, or LCDM model). (3) During the panel discussion, a long time was spent on Penrose’s Conformal Cyclic Cosmology hypothesis and it was speculated that fading dark matter might account for the Hubble Tension. The panel largely agreed that no one knew what dark matter was – it might have a large number of degrees of freedom, thus allowing the introduction of an arbitrary number of free parameters to fit almost anything.

Concerning the three points above, I wrote into the chat two questions (see Figure 1 below). Essentially, accepting the well-observed Gpc-scale KBC void as being a real structure of the Universe, the Hubble Tension must then arise from it logically (Haslbauer et al. 2020). This is because galaxies are accelerated gravitationally towards the sides of the void, and an observer within the void (as we are) then measures an apparent faster expansion of the local Universe (see figure 2 in 52. Solving both crisis in cosmology: the KBC-void and the Hubble-Tension). The Hubble Tension therefore has a very simple physical explanation.

In fact, a real Hubble Tension does not exist: it is merely an apparent effect caused by the observed KBC void (Haslbauer et al. 2020), and it would have been predicted if Wong, Suyu et al. (2020) and Riess et al. (2021) had not made their observations of expansion. It is the same reason, in essence, why apples fall to the Earth: replace the galaxies by apples, and they will fall to where they are attracted to, which is the side of the underdensity.

It was a wonderfull event and fascinating to see how the panel very happily discussed the entirely speculative fading dark matter concept in the context of the Hubble Tension, but no-one appeared to dare to raise the possibility that it might simply be due to the observed KBC void, as in fact it must be. I tried to help the panel by posting my question into the chat, but it appeared to me that, in the intimidating presence of highbrow scientists, discussing fading dark matter was acceptable, while raising the obvious solution was no-go. After all, who wants to ask a seemingly silly down-to-Earth question (“can the observed Gpc underdensity be responsible for the apparent Hubble Tension?”) in view of such intellectual Mt. Everests.

The second point above by the speaker I also found impressive, given that other independent falsifications of the LCDM model at more than five sigma confidence have been published, see the list A-F below. It seems that these contributions were missed in Chicago, or that Chicago Cosmologists “do not look up”. I guess they do not need to look up, since they are already on Mt. Everest.

I am still trying to digest this, which is why I wrote the above first paragraph.

Figure 1: My chat contribution. It received 7 votes, the highest of all questions, but the panel did not raise this issue with the speaker.

Why was neither the Golden Webinar speaker nor the panel willing to delve into the true physical reason for the Hubble Tension? I think that the problem is that the KBC void, which causes the Hubble Tension, falsifies the SMoC with more than 5sigma confidence (Haslbauer et al. 2020), because the SMoC cannot grow such large and deep under densities within a Hubble time. And furthermore, the Chicago Cosmologists, as represented by the speaker and author (next), seem adamantly to refuse to discuss MOND seriously. But MOND is the only known modern non-relativistic theory of gravitation in which the Universe can grow such a large observed void and observed early very massive interacting galaxy clusters (Asencio et al. 2021). We covered this galaxy-cluster problem on a previous occasion. In MOND, there is no Hubble tension (since the voids form naturally) and very massive interacting galaxy clusters also form naturally in the earlier Universe.

On the same day as the above Webinar, an Annual Review on “The Road to Precision Cosmology” was published on the arXiv: It is to appear in Ann.Rev.Nucl.Part.Sci. 72:1-33, https://arxiv.org/abs/2201.04741v1 .

I was interested, since the author is viewed by many to be an outstanding cosmologist, and I expected a fair, balanced and up-to-date review of cosmology for the community of Nuclear and Particle Physicists. This is an important review: Annual Reviews are corner stones of literature. Often they are the first entry point into a research field. Their role is thus truly important. On contemplating the review, I decided to write the following letter – let it speak for itself:

Letter sent on 17th of January 2022 to those addressed (with minute modifications for this forum):

Dear author,

(CC to Editors, Committee Members and Staff of the Annual Review of Nuclear and Particle Physics, and researchers working on MOND),

Concerning your review article "The Road to Precision Cosmology" which is to appear in Ann.Rev.Nucl.Part.Sci. 72:1-33,     https://arxiv.org/abs/2201.04741v1 :

I kindly ask you to adjust this article to represent the modern state of affairs truthfully: As it stands, the article is not a review but a biased misrepresentation of the state-of-the art in the research field. It misrepresents the entire field of cosmology to the research community in Nuclear and Particle Physics. 

If not-citing highly relevant research literature is considered to be equivalent to plagiarism, then you have provided a major example of such ill conduct: "Papers published in A&A should cite previously published papers that are directly relevant to the results being presented. Improper attribution — i.e., the deliberate refusal to cite prior, corroborating, or contradicting results — represents an ethical breach comparable to plagiarism." (citing from "Ethical issues: the A&A policy concerning plagiarism and improper attribution: https://www.aanda.org/index.php?option=com_content&view=article&id=136#Ethical_issues ).

In your article, we read "Sec. 3.1.2. False starts. In 1983, Milgrom noticed...."

This is an unacceptable representation of an entire highly successful and vibrant research field in which an increasing number of brilliant young physicists are active in.  You claim in this section that MOND cannot be falsified. This is wrong. We are actively working on falsifying this theory. MOND can be falsified by, for example, finding systems that do not obey the non-linear MOND Poisson equation.

Your article is not aware of or purposefully ignores that 

  1. The LCDM standard model of cosmology is in tension with the data on many different scales with significantly more than 5 sigma confidence.
  2. The data which are in tension with LCDM are at the same time naturally (i.e. without adjustment of any parameter) explained in a cosmological model which is based on Milgromian gravitation (MOND) without cold or warm dark matter.

Some of the relevant very recent major peer-reviewed research contributions (ignored by your article) on this are:

A) The existence of LCDM dark matter particles is in more than 5sigma tension with observed bar pattern speeds through the test based on Chandrasekhar dynamical friction published in 2021: Fast galaxy bars continue to challenge standard cosmology.

B) Very massive galaxy clusters form and interact at high redshift being in more than 5sigma tension with LCDM published in 2021: A massive blow for ΛCDM - the high redshift, mass, and collision velocity of the interacting galaxy cluster El Gordo contradicts concordance cosmology.

C) The observed local Gpc scale underdensity causes the Hubble tension and is in more than 5sigma tension with LCDM published in 2020: The KBC void and Hubble tension contradict ΛCDM on a Gpc scale - Milgromian dynamics as a possible solution,

Apart from the above extreme inconsistencies of the LCDM model with the respective data (spanning kpc to Gpc scales), MOND accounts for these naturally and it also naturally accounts for:

D) A planar group of galaxies recedes too rapidly from the Local Group (in >3.96 sigma tension with LCDM) published in 2021: On the absence of backsplash analogues to NGC 3109 in the ΛCDM framework.

E) The lack of a bar in the nearby disk galaxy M33 could not be explained in LCDM published in 2020: The Global Stability of M33 in MOND.

F) The planar (disk-like) distribution of satellite galaxies is inconsistent with LCDM but arises naturally in MOND published in 2018: MOND simulation suggests an origin for some peculiarities in the Local Group and Origin of the Local Group satellite planes.

Your article neither cites nor discusses these, and falsely implies the LCDM model to be consistent with the data at the precision level. Further, the review appears to suggest there to be no other model (without dark matter) that can claim comparable success. Claiming today that the LCDM model is a "triumph of precision cosmology" (Sec. 4.1 in your article) is purposefully propagating outdated misinterpretations to an audience who are non-experts in this research field. 

I will publish the contents of this email as an open letter, and I hope to receive a constructive reaction. 


Sincerely,

Pavel Kroupa

(Helmholtz-Institut for Nuclear and Radiation Physics, Bonn;                        Astronomy Institute, Charles University, Prague)


The interested reader might also consult “It’s time for some plane speaking” published by Marcel Pawlowski (2021) in Nature Astronomy. Although Marcel suggests there to be no obvious solution in sight, in MOND, the solution is quite trivial. The planes of satellites come from galaxy-galaxy encounters, as explicitly demonstrated by Bilek et al. (2018, A&A and 2021, Galaxies) and Banik et al. (2018, MNRAS).


In The Dark Matter Crisis by Moritz Haslbauer, Marcel Pawlowski and Pavel Kroupa. A listing of contents of all contributions is available here.

61. The crisis in the dark matter problem becomes a historically unparalleled failure in the scientific method

This year, Pavel Kroupa was asked to hold a Golden Webinar in Astrophysics on the dark matter problem. This contribution provides the link to the recording of this presentation which has now become available on YouTube. In this presentation, Pavel Kroupa argues that the dark matter problem has developed to become the greatest crisis in the history of science, ever. This contribution also provides links to recordings available on YouTube of previous related talks by the same speaker from 2010 (the Dark Matter Debate with Simon White in Bonn) and 2013 (in Heidelberg). This might allow some insight into how the debate and the research field have developed over the past dozen or more years.

1) Golden Webinar: “From Belief to Realism and Beauty: Given the Non-Existence of Dark Matter, how do I navigate amongst the Stars and between Galaxies?”

On April 9th, 2021, Prof. Pavel Kroupa presented a talk in the Golden Webinars in Astrophysics series on “From Belief to Realism and Beauty: Given the Non-Existence of Dark Matter, how do I navigate amongst the Stars and between Galaxies?”. The talk is now available on Youtube:

The slides to the talk without the fictitious story can be downloaded here:

If you are interested in other talks presented during The Golden Webinars in Astrophysics series, you can find the record of those already presented on their Youtube Channel, and here is a list of upcoming talks. The Golden Webinars are provided as a free public service and have no registration fees.

2) The vast polar structures around the Milky Way and Andromeda

In November 2013, Prof. Pavel Kroupa presented “The vast polar structures around the Milky Way and Andromeda” in the Heidelberg Joint Astronomical Colloquium. In the talk he discussed the failures of the Standard model of cosmology and the implications for fundamental physics.

A blog entry from 2012 on the vast polar structure (VPOS) of satellite objects around the Milky Way can be found here.

3) Bethe-Kolloquium “Dark Matter: A Debate”

In November 2010, Prof. Simon White (Max Planck Institute of Astrophysics, Garching) and Prof. Pavel Kroupa (University of Bonn) debated on the concept and existence of dark matter during the Bethe Colloquium in Bonn. Their presentations and the subsequent debate are available here:

a) Presentations by Prof. White and Prof. Kroupa

Summary of both presentations:

b) The Debate

The German-language television channel 3sat produced a TV report on the Bethe Colloquium, which can be also found on Youtube (available only in German):

Part I

Part II


In The Dark Matter Crisis by Moritz Haslbauer, Marcel Pawlowski and Pavel Kroupa. A listing of contents of all contributions is available here.

57. A splash too far: “On the absence of backsplash analogues to NGC 3109 in the ΛCDM framework”

The isolated but nearby galaxy NGC 3109 has a very high radial velocity compared to ΛCDM expectations, that is, it is moving away from the Local Group rapidly, as shown by Peebles (2017) and Banik & Zhao (2018). One of the few possible explanations within this framework is that NGC 3109 was once located within the virial radius of the Milky Way or Andromeda, before being flung out at high velocity in a three-body interaction with e.g. a massive satellite. In the new research paper “On the absence of backsplash analogues to NGC 3109 in the ΛCDM framework”, which was led by Dr. Indranil Banik, it is shown that such a backsplash galaxy is extremely unlikely within the ΛCDM framework. Basically, such galaxies cannot occur in ΛCDM because they ought to be slowed-down due to Chandrasekhar dynamical friction exerted on NGC 3109 and its own dark matter halo by the massive and extended dark matter halo of the Milky way. Making it worse, NGC 3109 is in a thin plane of five associated galaxies (the “NGC 3109 association”, rms height 53 kpc; diameter 1.2 Mpc), all of which are moving away from the Local Group (Pawlowski & McGaugh 2014), whereby the dynamical friction ought to slow down the galaxies in dependence of their dark matter halo masses. This makes its thin planar structure today unexplainable in ΛCDM.

Interestingly, the backsplash scenario is favoured by the authors (Banik et al. 2021), but in the context of MOND. In this theory, much more powerful backsplash events are possible for dwarf galaxies near the spacetime location of the past Milky Way-Andromeda flyby because in MOND galaxies do not have dark matter halos made of particles. A galaxy thus orbits through the potential of another galaxy unhindered and ballistically. The envisioned flyby could also explain the otherwise mysterious satellite galaxy planes which are found around the Milky Way and Andromeda. It now seems that the flyby may well be the only way to explain the properties of NGC 3109, since a less powerful three-body interaction is just not strong enough to affect its velocity as much as would be required. But a Milky Way-Andromeda flyby is not possible in ΛCDM as their overlapping dark matter halos would merge.

In a series of Tweets, the co-author Dr. Marcel Pawlowski briefly explains on his Twitter account @8minutesold the main results of this recent publication:

Source: https://twitter.com/8minutesold/status/1392430171240677376

Source: https://twitter.com/8minutesold/status/1392430171240677376


In The Dark Matter Crisis by Moritz Haslbauer, Marcel Pawlowski and Pavel Kroupa. A listing of contents of all contributions is available here.