68. A critical essay by Subir Sarkar on the standard model of cosmology

(Guest post by Nick Samaras, April 12th, 2022)

Nick Samaras is a Ph.D. student at the Astronomical Institute of Charles University, in the Faculty of Mathematics and Physics, in Prague, Czech Republic. He works on cosmological simulations with Milgromian Dynamics (MOND). He has obtained his M.Sc. degree in Theoretical Physics at Cergy University, in France after having completed his B.Sc. in Mathematics at the Aristotle University of Thessaloniki, in Greece. In his following guest post he writes about the cosmological principle and a recent essay titled “Heart of Darkness” by Prof. Subir Sarkar.

The Standard Model of Cosmology (SMoC) has been considered as the correct description of the Universe and its evolution for decades now. General Relativity along with the mysterious Dark Energy, embedded on the Friedmann–Lemaître–Robertson–Walker (FLRW) metric, provide the outset for the ΛCDM (Λ Cold Dark Matter cosmological) model. The FLRW metric is a formula derived from the General Relativity and corresponds to a homogeneous, isotropic and expanding universe. It is the mathematical tool with which one calculates distances on a 4-dimensional (time and the 3 dimensions of space) model. Nonetheless, according to more sophisticated investigations and the increase of observational data, the current theory faces a great number of challenges.

The Homogeneity and Isotropy hypothesis holds a convenient ground to do Cosmology. The so-called Cosmological Principle states that the Universe is very much alike anywhere over a typical scale of about 250/h Megaparsec (Mpc) (1 parsec = 1 pc is approximately equal to 3.26 light-years, unit of length). Remember that the Milky Way has a diameter of approximately 40 kpc, the Local Group of Galaxies is about 3 Mpc across, and the Virgo supercluster spans over about 30 Mpc). However, do the observations agree with this? Is there enough evidence to install the Cosmological Principle on a solid paradigm? How concrete are the cornerstones of the SMoC?

Subir Sarkar, an Emeritus Professor at the Rudolf Peierls Centre for Theoretical Physics, University of Oxford, argues that the real universe to be very different to the ΛCDM model and in particular the Cosmological Principle to be violated. Unraveling the record, the cosmological constant Λ (often being referred to as Einstein’s biggest blunder, the cosmological parameter causing the accelerating expansion) differs by many orders of magnitude when estimated from Quantum Field Theory (QFT), compared to what is inferred from Cosmology. He also emphasises an inconsistency when attempting to calculate the vacuum energy in QFT. The fact that the zero-point (vacuum) energy does not gravitate (otherwise it would have already dominated the Universe letting it evolve in a completely different way) have been kept aside even by the great Wolfgang Pauli, Prof. Sarkar points out.

Besides “the worst theoretical prediction in the history of physics” (Michael Hobson, George Efstathiou, and Anthony Lasenby), looking at the Cosmic Microwave Background (CMB – the primordial relic radiation released approximately 300,000 years after the Big Bang), its anisotropy dipole is larger than expected at high redshift (a cosmological way to calculate distances from us, based on the redshift of spectral lines). He notes that all matter in our nearby Universe has a coherent bulk flow approximately aligned with the direction of the CMB dipole. Several experiments, spanning from the 70s until these days, show that the bulk flow continues out to approximately 300 Mpc, remarkably not converging to homogeneity. The Indian theoretical astrophysicist wonders about Milne’s quote “the Universe must appear the same to all observers”, advocating historical changes in the field.

Sakar and his collaborators identified that the large dipole is not from the local universe. They have discovered that the cosmic rest frame of matter traced by quasars and the CMB don’t coincide. Thus, it is determined that the apparent acceleration is not happening because of the cosmological constant. It’s only a result of our non-Copernican position in the bulk flow. Consequently, the cosmic acceleration is not isotropic. ΛCDM begins to disintegrate …

Dark Energy, which drives the cosmos to accelerated expansion, in the form of an until-now-completely-not-understood repulsive force increasing with time, is therefore an occurrence generated by an over-interpreted conventionalised model which needs to be seriously revised. Leaving out the inflationary era a few moments after the Big Bang and the ambiguous premise of Dark Matter, the SMoC has been tested sufficiently to be replaced by a more detailed developed theory. Last, Prof. Sarkar, supporting that the Universe has different matter contents in different regions, encourages younger researchers to work out in greater depth an improved model of the real Universe .

Find here the essay “Heart of Darkness” by Prof. Subir Sarkar.


In The Dark Matter Crisis by Moritz Haslbauer, Marcel Pawlowski and Pavel Kroupa. A listing of contents of all contributions is available here.

67. MOND for Dummies

(Guest post by David Levitt, April 4th, 2022)

David Levitt is a retired biophysicist from the Department of Integrative Biology and Physiology at the University of Minnesota. In the following guest blog he explains his attempt of approaching astrophysics and cosmology and why he decided to write an introduction to Milgromian Dynamics (MOND). Interested readers can download his review “MOND for Dummies” at the end of the guest blog.

I am a retired biophysicist, teaching myself astrophysics and cosmology. Approaching this subject with this fresh perspective, one is immediately struck by the remarkable drama presented by the conflict between the standard Lambda Cold Dark Matter (ΛCDM) and Modified Newtonian Dynamics (MOND) paradigms. In addition to MOND being ignored by most of the astrophysics community, there is also a nearly complete neglect of MOND in current science teaching and popular science presentations. Although there are many detailed technical reviews of MOND along with the wonderful book by David Merritt (see also blog contribution 55) for a general audience, there is a surprising lack of a simple short review of the MOND/ΛCDM issues accessible to someone with, say, a knowledge of college physics but no background in astrophysics. This lack became frustratingly clear when my attempt to convey my excitement about this subject to my scientific colleagues and grandson taking university physics failed because I could not find an appropriate reference to refer them to.

I have, presumptuously, taken it upon myself to write such a review, “MOND for Dummies”, which is linked below. Although there are obvious disadvantages of taking on this project as an amateur in this field, there are also advantages. Firstly, I know the issues that resonate with someone approaching this subject without an astrophysics background. And, secondly, I am aware of the importance of keeping the math and physics simple. I have focused this review primarily on spiral galaxy dynamics because it provides, I believe, the most dramatic confirmation of MOND predictions along with being understandable at the level of college physics. I hope that it conveys my enthusiasm for what, I believe, is the most important and exciting problem in physics today and that it provides a convincing case that MOND is a stunning theory that makes some remarkable predictions that are nearly perfectly confirmed experimentally. For many readers of this blog, the issues discussed in my review are well known and redundant. However, I am sure you also have colleagues and students that are not aware of the drama playing out in this field and to whom you might refer it.

Please find here the link to “MOND for Dummies” (updated April 27) written by David Levitt.


In The Dark Matter Crisis by Moritz Haslbauer, Marcel Pawlowski and Pavel Kroupa. A listing of contents of all contributions is available here.



64. Youtube playlist full of MOND talks, debates and more

(Guest post by Mark Huisjes, December 8th, 2021)

In the following guest post by Mark Huisjes (GIS Analyst and master student at Utrecht University) we would like to promote a Youtube playlist, which includes talks, debates, Q&A’s, and more videos related to MilgrOmiaN Dynamics (MOND). This playlist is aimed for anyone who is interested in this research field.

Over the past year I’ve built a Youtube playlist of videos related to MOND, which is available online here.

Youtube playlist of talks, debates, interviews, Q&A sessions, and much more hosted by Mark Huisjes.

It contains more than 70 hours of talks, debates, interviews, Q&A sessions, and much more. Most of the listed videos are in English, but videos in French, Spanish, German, and Czech are also available at the end of the playlist. Subjects covered include fundamental MOND phenomenology such as rotation curves, the baryonic Tully-Fisher relation, the central density relation, and the radial acceleration relation, but also more advanced topics such as the external field effect, satellite galaxy planes, wide binaries, TeVeS, superfluid dark matter, and νHDM cosmology, and scientific tests of the hypothesis that dark matter exists.

This way people can easily find a talk if it is available online and delve deeper into the theory of MOND!


In The Dark Matter Crisis by Moritz Haslbauer, Marcel Pawlowski and Pavel Kroupa. A listing of contents of all contributions is available here.

62. Mailing list for the MOND community

(Guest post by Indranil Banik, November 22nd, 2021)

In the following guest post by Dr. Indranil Banik (past AvH Fellow in the SPODYR group at Bonn University and now at the St.Andrews University), we would like to promote a mailing list for the MOND community and anybody who is interested in this research field.

Following a request, I have set up a mailing list for the MOND community and anybody who wants to stay updated about our work. The idea is that if someone wants to advertise an upcoming talk or an article they have recently posted but they are at an early career stage and do not know everyone in the MOND community, they can just send an email to the mailing list. Also if some discussions between more senior researchers take place through this list, then any early career researchers signed up to it will be included in the conversation even if nobody thought explicitly to include them in the conversation. Regardless of whether you are signed up, you can send an email to the mailing list and everyone on it should receive the message.

The email address is: mondworkers@gmail.com

Please contact Elena Asencio if you want to sign up to this mailing list and thus receive the emails sent to it, she will be in charge of sending an invitation link which you need to accept in order to complete the sign up: s6elena@uni-bonn.de

We think it is not appropriate to send such invitation links to people who have not requested it, as such a request would take only a little time and we would not ask for any reasons for why you want to sign up.
At the moment, only a very small number of emails have been sent to the mailing list because I have only recently set it up. I envisage that it would not be used all that often for a while, and slowly catch on as more people know about it. Obviously it is not suitable for a great many emails as the sender might only want specific people to see it rather than the whole mailing list. But there are times when people want their email to gain extra visibility, and that is what this is about.

Please advertise this to especially early career researchers, it is intended for sharing adverts for upcoming talks, notifying others of articles and blogs, and discussing research ideas you want to share. In general, it is for anything you want to share with everyone on the list, including I suppose asking for advice. It is important that the more senior researchers working on MOND are signed up to it so that early career researchers who want to e.g. advertise a talk or get advice about a project manage to contact everyone on the list without knowing all their names and email addresses. In principle, a fair amount of customisation is possible with the filters that are used, and different filters can be used for different people on the list. At the moment, the only filtering in place is to prevent administrative emails being sent to everyone on the list. Requests to modify filters can be considered, and of course you can be removed from the mailing list if you ask. Thank you to those of you who have already signed up.

61. The crisis in the dark matter problem becomes a historically unparalleled failure in the scientific method

This year, Pavel Kroupa was asked to hold a Golden Webinar in Astrophysics on the dark matter problem. This contribution provides the link to the recording of this presentation which has now become available on YouTube. In this presentation, Pavel Kroupa argues that the dark matter problem has developed to become the greatest crisis in the history of science, ever. This contribution also provides links to recordings available on YouTube of previous related talks by the same speaker from 2010 (the Dark Matter Debate with Simon White in Bonn) and 2013 (in Heidelberg). This might allow some insight into how the debate and the research field have developed over the past dozen or more years.

1) Golden Webinar: “From Belief to Realism and Beauty: Given the Non-Existence of Dark Matter, how do I navigate amongst the Stars and between Galaxies?”

On April 9th, 2021, Prof. Pavel Kroupa presented a talk in the Golden Webinars in Astrophysics series on “From Belief to Realism and Beauty: Given the Non-Existence of Dark Matter, how do I navigate amongst the Stars and between Galaxies?”. The talk is now available on Youtube:

The slides to the talk without the fictitious story can be downloaded here:

If you are interested in other talks presented during The Golden Webinars in Astrophysics series, you can find the record of those already presented on their Youtube Channel, and here is a list of upcoming talks. The Golden Webinars are provided as a free public service and have no registration fees.

2) The vast polar structures around the Milky Way and Andromeda

In November 2013, Prof. Pavel Kroupa presented “The vast polar structures around the Milky Way and Andromeda” in the Heidelberg Joint Astronomical Colloquium. In the talk he discussed the failures of the Standard model of cosmology and the implications for fundamental physics.

A blog entry from 2012 on the vast polar structure (VPOS) of satellite objects around the Milky Way can be found here.

3) Bethe-Kolloquium “Dark Matter: A Debate”

In November 2010, Prof. Simon White (Max Planck Institute of Astrophysics, Garching) and Prof. Pavel Kroupa (University of Bonn) debated on the concept and existence of dark matter during the Bethe Colloquium in Bonn. Their presentations and the subsequent debate are available here:

a) Presentations by Prof. White and Prof. Kroupa

Summary of both presentations:

b) The Debate

The German-language television channel 3sat produced a TV report on the Bethe Colloquium, which can be also found on Youtube (available only in German):

Part I

Part II


In The Dark Matter Crisis by Moritz Haslbauer, Marcel Pawlowski and Pavel Kroupa. A listing of contents of all contributions is available here.

56. From Belief to Realism and Beauty: Given the Non-Existence of Dark Matter, how do I navigate amongst the Stars and between Galaxies?

(by Pavel Kroupa, 4th of April, 2021, 11:11)

Update (April 15th): After receiving some queries, the slides to the talk w/o the fictitious story can be downloaded here

On April 9th, 2021, I will give this public talk:

If interested, you can join the public lecture by registering here.

The talk, held via zoom, is on April 9that 11:00 Chilean Time (CLT = UTC-4),  8am Pacific Daylight Time (PDT = UTC-7),11am Eastern Daylight Time (EDT = UTC-4), 17:00 Central European Summer Time (CEST = UTC+2)

The Golden Webinars are provided as a free public service and have no registration fees. They are recorded and made available for later viewing via youtube.


In The Dark Matter Crisis by Moritz Haslbauer, Marcel Pawlowski and Pavel Kroupa. A listing of contents of all contributions is available here.

52. Solving both crises in cosmology: the KBC-void and the Hubble-Tension

(by Moritz Haslbauer, 20th Nov. 2020, 18:00)

A directly-related presentation by Moritz Haslbauer and Indranil Banik on the KBC-void and the Hubble tension in the ΛCDM model and Milgromian dynamics can found on the Youtube Channel “Cosmology Talks” by Shaun Hotchkiss: Maybe Milgromian gravity solves the Hubble tension!? – The KBC void & νHDM model (Haslbauer & Banik)

The Universe evolves through expansion and gravitation of matter, which leads to some regions having more galaxies and others having fewer. These variations directly reflect the way in which gravity has created structures out of initial density fluctuations over the last 14 billion years. Thus, the observed spatial arrangement of galaxies on scales ranging from 100 kpc to a Gpc is a very powerful test of different cosmological models and gravitational theories.

In our paper “The KBC void and Hubble tension contradict ΛCDM on a Gpc scale − Milgromian dynamics as a possible solution” (Moritz Haslbauer, Indranil Banik, Pavel Kroupa 2020), we tested if the observed spatial arrangement of galaxies on a Gpc scale can be explained by the standard model (Lambda-Cold Dark Matter, ΛCDM) of cosmology. We also tested if a Milgromian dynamics (MOND) model works.

Several surveys covering the entire electromagnetic spectrum (ranging from radio to X-rays) made an exciting discovery: we are in a Gpc-sized region of the Universe containing far fewer galaxies than ought to be in this volume if ΛCDM were correct.

For example, Karachentsev 2012 found a significant lack of galaxies within a sphere of radius 50 Mpc centered on the Local Group. He reported that the average mass density is a factor of 3-4 lower than predicted by the standard model of cosmology. In 2013, Keenan, Barger, and Cowie discovered that the local Universe is underdense on a much larger scale by counting galaxies at near-infrared wavelengths. They found evidence for an incredibly huge void (hereafter the KBC void) with a density about two times lower than the cosmic mean density and with a radius of about one billion light years (or 300 Mpc). This is about 2% of the distance to the observable Universe’s horizon (about 14 Gpc). The KBC void is shown in Figure 1 below.

Figure 1. The KBC void: the actual density of normal matter divided by the mean cosmological density is plotted in dependence of the distance from the position of the Sun (which is in the Local Group of galaxies). The grey area indicates the density fluctuations allowed by the ΛCDM model. Taken from fig. 1 in Kroupa (2015).

The results by KBC are striking because the ΛCDM model predicts root-mean-square (rms) density fluctuations of only 0.032, while the observed value is 0.46 with an uncertainty of 0.06. This drew our attention, so we decided to investigate the local matter field further in both the ΛCDM and MOND paradigms.

First, we started to quantify the likelihood of a KBC-like void in the ΛCDM model. Using one of the largest cosmological ΛCDM simulations (called MXXL), we rigorously confirmed our suspicion: Einsteinian/Newtonian gravity is simply too weak to form such deep and extended underdensities like the KBC void. Our calculations showed that the KBC void alone falsifies ΛCDM with a significance much higher than the typical threshold used to claim a discovery, e.g. with the famous Higgs boson. Consequently, the KBC void is totally inconsistent with the current standard model, implying that the observed Universe is much more structured and organized than predicted by ΛCDM. A similar conclusion was reached by Peebles & Nusser 2010 on much smaller scales by studying the galaxy distribution within the Local Volume, a sphere with 8 Mpc radius centred on the Local Group. And the whole Local Group is also “grievously” structured (Pawlowski, Kroupa, Jerjen 2013), showing a “frightening symmetry” as called by Pavel Kroupa.

The implications of the observed local density contrast on a Gpc scale are far-reaching, because so far it was widely understood that the ΛCDM paradigm provides a very successful description on this scale. Given the many failures of ΛCDM on galaxy scales (e.g. Kormendy et al. 2010 , Kroupa et al. 2010, Kroupa 2012, Kroupa 2015, Pawlowski et al. 2015), the ΛCDM model now faces significant problems across all astronomical scales. A compilation of failures, many of which have reached the 5sigma confidence threshold of ΛCDM failure, can be found in the previous contribution to the Dark Matter Crisis.

The observed spatial arrangement of galaxies on scales ranging from 100 kpc (the satellite planes) to 300 Mpc (our work) strongly suggests that structure formation is much more efficient than possible by Newton’s gravitational law, implying a long-range enhancement to gravity over that allowed by Newtonian gravity. This is in fact not surprising, given that Newton and Einstein both only had Solar System data at their disposal to formulate their theories; gravitation is after all, the least understood of the fundamental interactions. Consequently, we next studied the formation of structures in Milgromian dynamics, which was developed by Israeli physicist Mordehai Milgrom in 1983 (Milgrom 1983). MOND is a corrected version of Newtonian gravitation taking into account galaxy data which were non-existing for Newton and for Einstein. MOND successfully predicted many galaxy scaling relations, but has rarely been applied to cosmological scales.

We extrapolated the MOND model from galactic to a Gpc scale by applying the Angus 2009 cosmological MOND model. This Angus cosmological model has a standard expansion history, primordial abundances of light elements, and fluctuations in the cosmic microwave background (CMB), mainly because both the ΛCDM and MOND cosmology have the same mass-energy budget. However, instead of cold dark matter particles, the MOND model assumes fast-moving collisionless matter, most plausibly in the form of 11eV/c^2 sterile neutrinos. The existence of sterile neutrinos is motivated by particle physics, since they could explain why the ordinary neutrinos have mass. The low mass of hypothetical sterile neutrinos means they would clump on large scales (e.g. galaxy clusters), but not in galaxies, thus leaving their rotation curves unaffected. The following is in fact a most important point to emphasize: The Angus cosmological model needs extra fast moving matter which comes from standard particle physics (but still needs to be verified experimentally). This is very different to the ΛCDM model which needs dark matter particles that account for the observed rotation curves in disk galaxies but which are not motivated to exist by the standard model of particle physics.

The enhanced growth of structure in Milgromian gravitation generates much larger and deeper voids than in Einsteinian/Newtonian gravity. This leads to the formation of KBC-like voids as shown in our paper. Such an extended and deep underdensity causes an interesting effect: parts of the Universe beyond the void with more galaxies pull galaxies in the void outwards. This changes the motions of galaxies, making the local Universe appear to expand faster than it actually is. The situation is illustrated in Figure 2.

Figure 2: Illustration of the Universe’s large scale structure. The darker regions are voids, and the bright dots represent galaxies. The yellow star represents the position of our Sun. Note that the Sun is not at the centre of the KBC void. The arrows show how gravity from surrounding denser regions pulls outwards on galaxies in a void. If we were living in such a void, the Universe would appear to expand faster locally than it does on average. This could explain the Hubble tension. Interestingly, a large local void is evident in the entire electromagnetic spectrum. Credit: Technology Review

Indeed, local observations of how quickly the Universe is expanding exceed the prediction of ΛCDM by about 9%. This so-called Hubble tension is one of the greatest mysteries in contemporary cosmology. In our paper we showed that the unexpectedly high locally measured Hubble constant is just a logical consequence of enhanced structure formation in MOND, and us residing within a particularly deep and large void. This Hubble bubble scenario is however not consistent with ΛCDM because it does not allow for a sufficiently extreme void (Figure 3).

Figure 3: In our paper we showed that that the KBC void cannot form out of the initial conditions of the CMB at redshift z = 1100 if Einsteinian/Newtonian gravity is assumed. Adding the speculative cold dark matter does not help. Therefore, the Hubble tension cannot be explained by the KBC void in the context of the ΛCDM paradigm. Consequently, we aimed to study the formation of structures in Milgromian dynamics. The long-range enhancement to gravity in MOND allows the formation of KBC-like voids, which simultaneously explains the high locally measured Hubble constant.

Thus, the current hot debate among astronomers about the expansion of the Universe being different close to us than far away only exists because astronomers are using the wrong model. A universe which does not have exotic cold dark matter particles but runs on Milgromian gravitation ends up looking just like the real Universe, at least with the tests done thus far.

There is now a real prospect of obtaining a MOND theory of cosmology that explains the data from dwarf galaxies up to the largest structures in the Universe much better than the ΛCDM framework. Consequently, the here described cosmological MOND framework could be a way out of the current crisis in cosmology.

Given my affiliation with Charles University, I have been travelling to Prague and beyond frequently and now the CORONA Pandemic has stopped this flying about the planet — I have already written about the first wave and my getting marooned on a beautiful island next to the Strand. Being this time stranded in Bonn without a Strand during the second wave, I have a little more time on my hands I guess. So here we are, back to the Crisis.

In The Dark Matter Crisis by Moritz Haslbauer, Marcel Pawlowski and Pavel Kroupa. A listing of contents of all contributions is available here.

51. The Crisis in Cosmology is now catastrophic

(by Pavel Kroupa, 10th Nov. 2020, 09:00)

We have not blogged for some time and an update on some of the developments concerning The Dark Matter Crisis has been posted here. Below are recent scientific developments which strongly suggest that the standard model of cosmology (the SMoC) which relies on the existence of cold  or warm dark matter (C/WDM) particles is not a correct description of the observed Universe. Note that the SMoC which is based on the hypothesis that cold dark matter particles exist comprises the currently widely accepted LCDM cosmological model, while the SMoC which assumes warm dark matter particles exist constitutes the currently less popular LWDM cosmological model.  The difference of both models in terms of structure formation and the type of galaxies formed is minimal, which is why both are referred to as the SMoC. 


Why has the Cosmology Crisis become catastrophic?
  1. First of all, C/WDM particles have still not been found after more than 40 years of searching! The account of the situation published on October 11th, 2020, on the Triton Station by Stacy McGaugh is worth reading. Stacy writes “… the field had already gone through many generations of predictions, with the theorists moving the goal posts every time a prediction was excluded. I have colleagues involved in WIMP searches that have left that field in disgust at having the goal posts moved on them: what good are the experimental searches if, every time they reach the promised land, they’re simply told the promised land is over the next horizon?“. In view of the available evidence challenging the existence of C/WDM particles, it is stunning to read “The existence of Dark (i.e., non-luminous and non-absorbing) Matter (DM) is by now well established” in Sec. 26.1.1 of the 2018 version of the Review of Particle Physics. Some five years ago I had dared to  suggest to the editors and section authors to change this very statement to “The existence of Dark (i.e., non-luminous and non-absorbing) Matter (DM) is currently a leading hypothesis” or similar, but the short reply was quite unpleasant.  It is unfortunate that only the cosmological argument leads one to the C/WDM particle hypothesis, there being no independent (non-cosmological and non-astronomical) evidence. Such evidence could have come from indications in the Standard Model of Particle Physics, for example, but this is not the case. Put in other words, if we had not known about cosmology or galaxy rotation curves, we would not be contemplating C/WDM particles. Thus, by the astronomical evidence having gone away (follow the Dark Matter Crisis), the physicists are left with nothing apart from belief. I would argue that the words “belief” and “opinion” should be banned from the language of natural sciences.  Note that the situation is different for the fast collisionless matter (FCM, or “hot dark matter”) which appears in  MOND-cosmological models (Angus 2009).  Independetly of the astronomical evidence, the experimental fact that neutrinos have mass and oscillate suggests the existence of an additional sterile neutrino. Candidates for FCM particles thus arise independently of astronomy or cosmology.   FCM particles do not affect galaxies as they are too low mass, so even at their maximum allowed phase space density as set by the Tremaine-Gunn limit, they cannot be dynamically relevant to the masses of galaxies. Returning to the SMoC: the lack of experimental verification of C/WDM particles comes in hand with additional failures of the SMoC:
  2. Testing for the presence of the speculative C/WDM particles through the very well understood physical mechanism of Chandrasekhar dynamical friction leads to the conclusion that the dynamical friction through the putative dark matter halos around galaxies which are, in the SMoC, made up of C/WDM particles, is not evident in the data (Angus, Diaferio & Kroupa 2011; Kroupa 2015; Oehm & Kroupa 2017). That is, a galaxy which falls towards another galaxy should be slowed down by its dark matter halo, and this slow-down is not seen. The galaxies pass each other with high velocities, like two stars passing each other on hyperbolic orbits, rather than sinking towards each other to merge. This evidence for the non-existence of C/WDM halos around galaxies is in-line with the above mentioned lack of experimental detections (point 1 above). Customarily, an image of two strongly interacting galaxies is automatically interpreted as being a galaxy merger. But this is an over-interpretation of such images, since the implied mergers are not happening in the frequency expected in the standard dark-matter-based theory. Renaud et al. (2016) calculate ant document the theoretical description of an observed strongly interacting galaxy pair in the C/WDM framework and in MOND. Indeed, that the population of galaxies does not evolve significantly since a redshift of one has been found by Hoffmann et al. (2020) and has already been described by Kroupa (2015). This lack of evolution and the hugely vast preponderance of disk galaxies, of which a large fraction is without bulges,  means that galaxies merge rarely as mergers nearly always transform the involved disk galaxies into earlier types of galaxies (disks with massive bulges, or even S0 or elliptical galaxies). 
  3. The Hubble tension is now much discussed. The Hubble Tension comes about as follows: the Hubble constant we should be observing today can be calculated assuming the standard dark-matter based SMoC is correct and that the Cosmic Microwave Background (CMB) is the photosphere of the Hot Big Bang (but see also point 6 below). The actually measured present-day value, as obtained from many independent techniques including supernovae 1a standard candles, gravitational lensing time delays, and mega-masers, comes out to be significantly larger though. The evidence is compiled in Haslbauer et al. (2020). The observer today sees a more rapidly expanding Universe than is possible according to the SMoC. More on the Hubble tension below (point 7).
  4. The planes of satellites (or disk of satellites) problem has worsened: Our own Milky Way has been found to have a more-pronounced disk of satellite galaxies around it than thought before (Pawlowski & Kroupa 2020; Santos-Santos, Dominguez-Teneiro & Pawlowski 2020). Andromeda has one (Ibata et al. 2013, Sohn et al. 2020) and the nearby Centaurus A galaxy too (Mueller et al. 2018). The majority of other galaxies also show evidence for such planes or disks of satellites (Ibata et al. 2015). That the three nearby major galaxies simultaneously show such disks of satellite galaxies, and that disks of satellite systems are indicated by the majority of more distant galaxies, where the SMoC expects such satellite planes only in very rare cases (Pawlowski et al. 2015; Pawlowski 2018), eliminates with de facto complete confidence (i.e. much more than 5sigma) the SMoC, given that the satellites are in the great majority of cases ancient and void of gas such that they must have orbited their hosts many times. The Milky Way satellites also seem to be on almost circular orbits, strongly suggestive of a dissipative origin (Cautun & Frenk 2017) similar to the process that forms solar systems.
  5. Astronomical data have uncovered, with extremely high confidence (more than 5sigma), that the strong equivalence principle is violated on the scale of galaxies  (Chae et al. 2020 ), exactly in-line with a central expectation by MOND (Milgrom 1986), and in contradiction to the SMoC. While apparently not receiving much attention (e.g. via news coverage), this work by Chae et al. (2020) is a game-changer, a break-through of the greatest importance for theoretical physics. Independent evidence for the violation of the strong equivalence principle is also evident in asymmetrical tidal tails around globular clusters (Thomas et al. 2018). Gravity therefore behaves non-linearly on galaxy scales, preventing a simple addition of the fields contributed by different masses. This is a consequence of the corrected, generalised Poisson equation (Bekenstein & Milgrom 1984) which these authors point out is also found in classical theories of quark confinement.
  6. Possibly a “nuclear bomb” nuked standard cosmology: Although the SMoC is only valid if the Universe is transparent, observations show there to be dust between galaxies. This intergalactic dust is ancient, and it radiates as it is heated by photons from the surrounding galaxies. Vaclav Vavrycuk (2018) has added all photons from this dust in an expanding Universe (i.e., in the past the intergalactic dust density was higher in a warmer Universe) and found the photon emission received by us to be very (nearly exactly) comparable to the measured CMB with the correct temperature of about 2.77K.  For an explanation of his research paper see this YouTube video by MSc student Rachel Parziale at Bonn University. Note that the measured weak but large-scale magnetic fields around galaxy clusters and voids produce a correlated polarisation signal. The total number of infrared photons received at Earth is an integral over the time evolving density distribution along the line of sight such that the observed mass distribution within a small redshift around us should not correlate with the overall fluctuation of photon intensity seen in projection on the sky.  The calculations by Vavrycuk thus suggest that CMB=cosmological dust emission, rather than being the photosphere of the Hot Big Bang. CMB research comprises an incredibly precise science, but the role of intergalactic dust needs to be considered very carefully and by avoiding pre-conceptions. Note that even if only a few per cent of the CMB were to be due to ancient intergalactic dust, then this would already bring down the SMoC.
  7. The Universe around us contains far too few galaxies out to a distance of about 0.3 Gpc. This Keenan-Barger-Cowie (KBC) void falsifies the SMoC at  more than 6sigma confidence. The KBC void kills the SMoC because the SMoC relies on the Universe starting off isotropically and homogeneously with the observed CMB fluctuations at the redshift z=1100 boundary condition about 14Gyr ago and cannot evolve density differences to the observed KBC under-density at z=0 which is the present time. Combined with the Hubble tension, the SMoC is falsified with more than 7sigma confidence. Newtonian gravitation plus the hypothetical C/WDM particles are together nowhere near strong enough to generate the observed density contrasts and the observed velocity differences between neighbouring Gpc-scale volumes. The next blog by Moritz Haslbauer will explain this situation.  Note that here we still treat the CMB as the photosphere of a Hot Big Bang, but this may need to be reconsidered (see point 6 above).
  8. The SMoC relies on the Universe having no curvature, but Di Valentino, Melchiorri & Silk (2020) find the enhanced lensing amplitude in CMB power spectra to imply a closed and thus curved Universe. However, this could be related to structure formation being more efficient than is possible in the SMoC (see point 7 above).
  9. Cosmic isotropy is challenged at the 5sigma confidence level by X-ray selected galaxy clusters (Migkas et al. 2020), with the implication that the Universe appears to expand faster in a certain direction. A discussion of this evidence is provided by Scientific American. Cosmic isotropy is also challenged by the significant evidence for a dipole in the number counts of quasars beyond redshift one (Secrest et al. 2020). Independently of this, Javanmardi et al. (2011) also found evidence for a directionally dependent expansion rate.
  10. Last for now but not least, the observation of massively interacting galaxy clusters such as the El Gordo cluster at high redshift (z=0.87) independently falsifies the SMoC with more than 6sigma confidence. In the SMoC, galaxy clusters cannot grow to such masses by this redshift – there is not enough time, or alternatively, Newtonian gravitation is too weak even with the help of the hypothetical C/WDM particles. This is shown by Asencio, Banik & Kroupa (2020). Elena Asencio is researching for her MSc thesis in the SPODYR group in Bonn.

Combining the above KBC void/Hubble Tension/El Gordo falsifications with the previously published tests (Kroupa et al. 2010, Kroupa 2015; see the figure below taken from Kroupa 2012) means that it has become, by now, wrong to still consider the standard dark-matter based cosmological model, the SMoC, as being relevant for describing the Universe. The falsification of the SMoC has reached well above the 7 sigma confidence — Remember: the Higgs Boson was accepted as having been discovered once the experimental confidence rose to 5sigma. It is important to emphasise that independent tests on very different scales lead to the same result, the SMoC being ruled out by many tests with more than 5sigma confidence. 

Standard model of cosmology (SMoC) falsifications prior to 2012

The loss of confidence until 2012 in the Standard Model of Cosmology (SMoC) with each documented failure (numbered here from 1 to 22 and explained in Kroupa 2012) which has never, to date, been resolved. Thus, if each such failure (meaning the SMoC prediction is falsified by observational data) is assumed very conservatively to lead to a loss in confidence of only 30% that the SMoC is valid, then, by today (including the catastrophic >6sigma falsifications described in this blog) the statement that the SMoC describes the real Universe can be defended with a confidence=epsilon, with epsilon being arbitrarily close to zero (taken from figure 14 in Kroupa 2012).

The above list, but more importantly, the very high significance of the results, seem to indicate that a paradigm change may be under way in the sense that our current understanding of the Universe may be entirely rewritten at a very fundamental level. This is already indicated by gravitation being Milgromian. The paradigm shift would be epochal (see also this previous blog on the historical context) if  the suggestion by Vavrycuk concerning the physical nature of the CMB were correct (point 6 above) because in this case our very concept of a Hot Big Bang and the origin of matter would be up in the air. There is independent evidence that a once-in-a-century paradigm shift may be under way: the Universe is much more structured than allowed by the SMoC. Thus, the Local Group of Galaxies (on a scale of 3Mpc across, Pawlowski, Kroupa & Jerjen 2013 ) shows a frightening symmetry in its matter arrangement (I call this frightening because there is currently no known theory to explain this distribution of matter). The arrangement of galaxies (Peebles & Nusser 2010) in the nearby cosmological volume (20Mpc across) does not correspond to the SMoC model and these very galaxies show a history of star-formation which appears to be far too tuned and non-varying (Kroupa et al. 2020). This begs the question how they manage to do so? The entire local Universe appears to be engaged in a significant bulk flow generated by major voids and over-densities (Haslbauer et al. 2020; Hoffmann et al. 2020).

Galaxies provide formal and precise observational data that allow us to correct the work of Newton and Einstein on gravitation, who did not have these data at their disposal. Rather, they formulated the currently assumed theories of gravitation subject to Solar System constraints only, which are now many decades if not centuries old. In his book “A Philosophical Approach to MOND“, David Merritt (2020)addresses the formal philosophical measures concerning how the Newtonian/Einsteinian formulation of gravitation needs to be assessed in terms of its success in describing the observed Universe in comparison with the correction to the law of gravitation through incorporation of galaxy data as formulated by MilgrOmiaN Dynamics (MOND). (Next sentence added Jan 3rd, 2021:) In Merritt (2017) we read his conclusion “The use of conventionalist stratagems in response to unexpected observations implies that the field of cosmology is in a state of ‘degenerating problemshift’ in the language of Imre Lakatos.”  This would tend to close a circle: if Newtonian/Einsteinian gravitation needs to be revised, then we cannot use Einsteinian gravitation to formulate the evolution of the Universe, which opens the whole issue of how it started, what are the boundary conditions and how does it evolve? The Catastrophic Crisis in Cosmology (i.e. the fact that the observational data do not fit to the SMoC) is thus merely exactly the statement that we may well be in the process of a very major paradigm shift.

The big challenge for the future will be to find out how the Universe truly does work. The next blog by Moritz Haslbauer will indicate how a step towards this goal might have been achieved by Haslbauer, Banik & Kroupa (2020). 


In The Dark Matter Crisis by Pavel Kroupa. A listing of contents of all contributions is available here.

50. Update on the Dark Matter Crisis…

and are we at the beginning of a major historical paradigm shift?

(by Pavel Kroupa and Moritz Haslbauer, 07th Nov. 2020; 15:00)

There have not been posts on this blog for some time.  The reason is certainly not that the dark matter crisis has gone away.  Quite the contrary — the dark matter crisis, or more generally the cosmological crisis, has worsened and is now quite catastrophic. More on this in the next blog “The Crisis in Cosmology is now catastrophic”. With this contribution we provide an update on recent developments and some philosophical contemplation concerning paradigm shifts.

As a reminder: this blog on the Dark Matter Crisis was started in 2010 through the pressure (which I first resisted) by staff of the journal Spektrum der Wissenschaft in Germany (equivalent to Scientific American) who wanted Marcel Pawlowski (then a PhD student in the SPODYR group in Bonn) and me to blog about the developing crisis. This was related to the research I was involved with at that time leading me to the conclusion that the astronomical data rule out the standard dark-matter-based cosmological model as being relevant for a description of the Universe. This was in tension with my peers. 

In January 2013 the blog was moved, along with all English blogs on Spectrum,  to Scilogs.com. Later this same year there was a temporarily successful attempt by an amateur-science blogger (a sworn MOND enemy) to have the Dark Matter Crisis close down. This failed and the Dark Matter Crisis continued, simply because it’s content is scientifically solid. In 2016 SciLogs.com decided not to host the English Spektrum blogs any longer, and they were transferred to WordPress.com, where they are now. We have not blogged since this last move which had not gone perfectly well technically, with quite a few images having been lost. Just now we repaired most of the losses after some historical digging and with the help of Srikanth Togere Nagesh, MSc student at the University of Bonn. The corrections are continuing, and we are finding that some old links out of the Dark Matter Crisis blogs do not work any longer – we are trying to update them as far as possible and given the limited time available. This has taught me that documentation developed for the internet is fleeting. But we hope the WordPress platform will remain stable. 

Much has happened since the move to WordPress: Indranil Banik, who had contributed the last piece obtained his PhD and is now an Alexander von Humboldt Fellow in the SPODYR group in Bonn. Marcel Pawlowski obtained a Hubble Fellowship and is now a Schwarzschild Fellow at the Leibniz-Institute for Astrophysics in Potsdam, Germany.  Moritz Haslbauer, who is now researching towards his PhD in the SPODYR group at Bonn University, joined our editorial team just now and will publish his first post in the next contribution based on his own research on the Keenan-Barger-Cowie void and the Hubble tension.  He already published two other research papers, one on galaxies lacking dark matter in cosmological simulations (Haslbauer et al. 2019a), and one on ultra-faint dwarf galaxies in cosmological simulations (Haslbauer et al. 2019b), both finding that the observed galaxies are in conflict with the standard model of cosmology (the SMoC).  Concerning myself (PK), I have taken up a joint affiliation with Charles University in golden Prague and have been spending much time travelling there and beyond. I guess the beer, the knedliky and the scientific and cultural importance as well as the open atmosphere at the institutes and the multi-cultural nature and safety of historically extraordinarily beautiful Prague resonate with me. In Bonn, we hosted the large international conference BonnGravity2019: The functioning of galaxies in 2019 and I disjoined myself from the astronomers and have administratively joined a pure-baryonic-physics institute, namely the theory group at the Helmholtz-Institut für Strahlen- und Kernphysik at the University of Bonn. In this context:

Scientists have explorative minds and we know science evolves into new and often unforeseen directions and we should keep our minds open to these in order to allow science to progress rather than stopping scientific advance. It is also important to continue discussions between people working on different ideas without being dismissive. History shows that changes of paradigm can last decades and for those involved it may be impossible at the time to know if they are on the right track.

from Tereza Jerabkova
But are we in a paradigm shift and are we on the right track? The indications for being on the right track come, of course, from constant comparison of the theory one is developing with the observational data, and this blog will be covering this in the future. But are there perhaps some apparently unassociated hints or indications for an ongoing true major paradigm shift?

From the historical record: Very major paradigm changes in world view (religious, scientific) seem to be associated with significant relatively rapid transformations in the arts and with dramatic historical upheavals. Examples of this are (1) the fall of the Roman Empire went along with large-scale change to benign [thou shalt neither lie to nor kill anyone, but love and forgive everyone and all are equal in front of God] monotheism in Europe which improved local social cohesion, removed slavery from Europe and constituted an essentially critical mental step in abstracting the workings of the Universe. This abstraction is critically important because, simply put, until the abstraction there was a deity for every phenomenon (e.g. god of war). (2) The [first] 30 year war in the 17th century which was associated with the Keplerian revolution. In music, the first opera “L’Orfeo” by Monteverdi appeared in 1607. (3) In the early 19th century, the social transformations and associated Napoleonic wars with their large orchestrated battles outside of cities and the “Revolutions of 1848” appear to go in-hand with the development of thermodynamics and electricity as well as the emergence of romantic music and the symphonies by large orchestras (Schumann, Verdi, Wagner, Bruckner, Brahms, Tschaikowsky, and others). (4) The [second] 30 year war in the 20th century (i.e. the first and second world wars combined) happening in-parallel to the Einsteinian/Planckian revolution and being accompanied by the appearance of the twelve-tone technique by Schönberg and the music by the Russian composers Shostakovich, Prokofjew, Stravinsky, and Rachmaninow. (5?) The current world-wide geopolitical developments which appear with rising tensions and increasing dissociation of the power-blocks from each other, the accelerating demographic and potentially negative cultural-religious shifts in Western Europe, the societal changes concerning personal individualism, cancel culture and political correctness, and all of this in combination with the accelerating over-population, climate, micro-plastic-pollution crisis and on-going mass extinction, do seem to be suggestive of a major upheaval which is in the process of unfolding.

The next blog explains why cosmology is in a catastrophic crisis.

Given my affiliation with Charles University, I have been travelling to Prague and beyond frequently and now the CORONA Pandemic has stopped this flying about the planet — I have already written about the first wave and my getting marooned on a beautiful island next to the Strand. Being this time stranded in Bonn without a Strand during the second wave, I have a little more time on my hands I guess. So here we are, back to the Crisis.

In The Dark Matter Crisis by Moritz Haslbauer and Pavel Kroupa. A listing of contents of all contributions is available here.

48. The Weizmann Experience: discussions on the future of cosmology

Together with Francoise Combes, who was recently appointed as a professor in the most prestigeous institution in France, Le College de France, and Benoit Famaey, who is an expert on Milgromian dynamics and its deeper foundations (e.g. Famaey & McGaugh 2012), we were invited by Mordehai (Moti) Milgrom to spend a whole week at the Department of Particle Physics and Astrophysics in the Weizmann Institute in Rehovot, Israel. A link to the video (dubbed in English) of the inaugural lecture given by Francoise Combes for her new chair and the introduction by Serge Haroche (Nobel Prize 2012 in physics) is available here (alternatives to the dark matter approach are explicitly mentioned by both).

I met Benoit at Frankfurt airport in the very early morning (he was heading in some random direction) since we had booked the same Lufthansa flight to Tel Aviv. We arrived on Sunday, March 6th, and met Moti at his office in the late afternoon.

weiz1

In the entrance hall of the Department. From left to right: Einstein’s field equation without Lambda, Francoise Combes, Mordehai Milgrom, Pavel Kroupa and Benoit Famaey.

Coming to know the place and first discussions

I am very impressed by the size and beautiful campus of the whole Weizmann Institut, and how pleasant the entire ambiente is.

wiez2

Chairs and a pond in front of the Department.

The people are very friendly and  helpful. And interested. I was staying at the spacious and luxurious San Martin Faculty Clubhouse. At night the various buildings and park areas in the Weizmann Institute are illuminated beautifully, with warm lights setting accents and emphasizing a welcoming atmosphere.

The highly-ranked  Weizmann Institute consists of many departments of various natural sciences and seems to be perfectly created for academic pursuit, including leisure areas. Its success in the pursuit of basic research in the natural and exact sciences and in acquiring funding is evident through the architecture, spaciousness, and general design.

There was no planned agenda for us, apart that Benoit was to give a talk on Wednesday, 9th of March, at 11:15, and for Francoise Combes to give a departmental colloquium on Thursday, 10th of March at 11:15. In between these talks we could do either nothing and hang about enjoying the sunshine and exquisite weather and pool, or engage in intense discussions. Perhaps due to the ambiente and of course our comparable research interests, we largely chose the latter.

On Monday, 7th of March, we had a very relaxed day, meeting with Moti at the Department in the late morning and spending our time debating. Typical discussion points (largely between Francoise, Benoit and myself) throughout the visit were the local major underdensity and its possible implications on the value of the cosmological Lambda, the underlying theory of MOND and whether it is due to a “dark” fluid which behaves like dark matter on large scales (e.g. Luc Blanchet’s dipoles and Justin Khoury’s condensate)

Given that Lambda was missing in the equation displayed in the entrance hall of the Department (see first photo above), we began to discuss it. And this is where the “local” underdensity now plays a possibly important role, see this figure from Kroupa (2015),

K_K_Underdensity

The underdensity is significant, according to the shown data, and may challenge any cosmological model. From Kroupa (2015).

and in contrast the very recent work by Whitbourn & Shanks where the authors explicitly state agreement with the previous survey by Kennen et al. (2014). The independent finding by Karachentsev (2012) on the local 50 Mpc scale appears to naturally continue the trend evident from the Kennan et al. data (see the figure on the left), IF one assumes the same baryonic to dark-matter ratio as at larger distances. The actually measured stellar density remains similar to the Keenan et al. value at small distance. So the baryonic density (assuming the gas to star ratio and the contribution by dwarf galaxies to remain unchanged out to distances of 800 Mpc [redshift of 0.2]) then within 300 Mpc there is at least a decrease in the baryonic density by factor of two. Conversely, taking Karachentsev’s measurement, we would see a disappearance of dark matter nearby to us since the stellar density remains similar to the Kennen measurement within 150 Mpc while the dark matter density decreases further. So the measurements appear to imply the following picture: within 400 Mpc the luminous (and thus baryonic) matter density decreases significantly by a factor of two. At the same time, the ratio of dark matter to baryonic matter decreases even more. Both findings violate the cosmological principle.

The work by David Wiltshire (his lecture notes) and Thomas Buchert already indicates that inhomogeneities could possibly make the Universe appear to an observer situated within such an underdensity as if it’s expansion is accelerating, although in truth it is not. That is, the inhomogeneities appear to be of the correct magnitude to eliminate the need for Lambda, Lambda (dark energy) merely being an apparent effect mis-interpreted by the supernova type 1a data. The reason lies in that a distant object’s observed redshift depends in reality on the exact paths the photons travel in a universe which consists of time-changing voids and over-densities, and this is a different redshift computed assuming a homogeneous and isotropic expanding Universe.

But we need more detailed calculations taking into account the constraints from the observed under-density shown in the figure to be assured that Lamba=0. It is certainly true that Lambda=0 may be more in line with theoretical ideas than the very small value deduced to explain an apparently accelerating Universe, because it is actually predicted, from quantum field theoretical calculations of the vacuum (for details see e.g. Padilla 2015), to have a value some 60 to 120 orders of magnitude larger. It should be emphasized, though, that “MOND likes Lambda“, in the words of Moti. The reason is that the Lambda derived from astronomical observations (e.g. from supernovae of type 1a observations) and Milgrom’s constant a_0 appear to be naturally related, and MOND may be derivable from vacuum processes (Milgrom 1999).

Within about 300 Mpc, where we can say that we have the best measurements, the Universe is nicely consistent with MOND. The mass-to-light ratios of galaxy groups are less than 10 (Milgrom 1998 and Milgrom 2002), i.e. there is only baryonic matter. The observationally inferred increased density of baryonic matter at distances larger than 300 Mpc would then perhaps be due to cosmological models being inappropriate, i.e. that the currently used red-shift–distance relation may be wrong.

We also debated galaxy evolution, the fraction of elliptical galaxies and the redshift dependence of this fraction. Notably, fig.7 in Conselice (2012)  shows that the observed fraction of massive galaxies does not evolve although the LCDM model predicts a strong evolution due to merging. This is consistent with the independent finding by Sachdeva & Saha (2016) that mergers are not a driving mechanism for galaxy evolution, and this is in turn consistent with the independent findings reached by Lena et al. (2014)  on the same issue.

We further talked about how LCDM is faring on large, intermediate and small  scales, how stellar populations change with physical conditions, the variation of the IMF, as well as political topics. The discussions were far from reaching consensus, we had different views and data sets we could quote on various problems, and time flew by such that we barely noticed.

However, Moti managed to drag us away from his Department, and showed us around the Weizmann institute. An particular station was the famous landmark tower which once housed the Koffler Accelerator and which now houses, in its “bubble”,

image-11

The tower which housed the Koffler Accelerator and which now houses a conference room (in its “bubble”) and the Martin S. Kraar Observatory.

a conference room and also the Martin S. Kraar     observatory which is also used in international top-level    research projects. The director of the observatory, Ilan   Manulis, kindly explained to us in much detail its   functionality and design for full remote-observations   without human interference.

weiz3

Viewing the lands from the top of the Koffler Accelerator Building. From left to right: Benoit Famaey, Francoise Combes and Mordehai Milgrom.

image

Part of the Weizmann Institute as viewed from the top of the Koffler Accelerator Building.

P1020148

The Group at the Koffler Accelerator. From right to left: Benoit Famaey, Francoise Combes, Mordehai Milgrom and Pavel Kroupa

On this Monday Moti took us to lunch at the Lebanese restaurant Petra located in Nes-Ziona, a town 5 minutes drive from the Weizmann Institute. The Lebanese cuisine was fabulous, and I ate far too much.

A diversion to history

And, on Tuesday, 8th of March, Moti and his wife Ivon took us on a drive-around nearby Israel. This trip, involved about 4 hours of driving by Moti, and while driving we discussed, amongst other topics, the new study by Papastergis et al. (2016) in which they use 97 gas-dominated galaxies from the ALFALFA 21cm survey to construct their estimate of the baryonic Tully-Fisher relation showing excellent agreement with the expectations from Milgromian dynamics.

The drive was incredible, as we saw places with many thousands of years of history dating back to the Caananite peoples. It is this land which took the central role in the evolution of the Mediteranean-Sea-engulfing Roman Empire to a Christian empire. It contains the scars of the episodes of the invasion by a newer religion of christian lands, christian reconquest, and reconquest by the newer religion, till the foundation of Israel, issues which remain current to this day.

We visited Caesarea:

image-2

The author amongst the ruins of Caesarea. “What was the fate of Caesarea’s inhabitants when it fell to the Mamluks?”

image-4

Caesarea, once a thriving port for many centuries, from where Paulus was imprissioned and sent to Rome for his hearing at the emperor’s court, was wiped out in the 13th century.

P1020190

The Group in front of the Roman ampitheater in windy Caesarea, nearly but not quite ready. From right to left: Mordehai Milgrom, Francoise Combes, Benoit Famaey, Pavel Kroupa.

The thriving thousand-year old medieval city of Caesarea, named by King Herod after Octavian (i.e. Augustus Caesar) and which was once the main port in his kingdom, was finally obliterated from existence after a siege by a Mamluk army in the thirteenth century.

Acre: the chief port in Palestine  during the crusader epoch still boasting major remains of the huge crusader’s fortress:

Acre: the remains of the Crusader port.

Acre: the remains of the Crusader port.

image-7

Acre, once a blossoming port and a gate-way to the holy lands for christian pilgrims.

After a wonderful dinner at the seashore between Tel Aviv and old Jaffa at the restaurant Manta Ray, where some action happened just before we arrived judging from the large number of police and other forces around, we visited very beautiful Old Jaffa:

Old Jaffa, which dates back to a history of 4000 years and where alrady the Egyptian empire stationed a garrison.

Old Jaffa, which dates back to a history of 4000 years and where alrady the Egyptian empire stationed a garrison.

image-9

Old Jaffa.

The restoration of the archeological sites of   Caesarea, Acre and of Old Jaffa brings to mind   how  incredibly rich and beautiful the thousand   year old places are along the Mediterranean coast   throughout the middle East and northern Africa, if   upheld with the corresponding desire to show   this history.

Back to science

On Wednesday, 9th of March, we spend the whole day in discussions with staff of the Institute. It began with Benoit Famaey’s presentation on the latest numerical results of modelling the Sagittarius satellite galaxy and its stream in Milgromian dynamics by Strasbourg-PhD student Guillaume Thomas. Natural solutions appear to emerge and this will, once published, clearly add spice to the discussions, given that the only solutions available in LCDM by Law & Majewski (2010) are unnatural in that the dark matter halo of the Milky Way needs to be oblate at right angle to the Milky Way, a solution which poses severe dynamical instabilities for the Milky Way disk. Notably, this polar oblate dark matter halo of the Milky Way alignes with the vast-polar structure (the VPOS) of all satellite galaxies, young halo globular clusters and stellar and gas streams.

In these discussions with the staff members during the aftenoon, we dealt with supernova rates and explosions and types in different galaxies, the relevance to the variation of the IMF in various environments (e.g. metal-poor dwarf galaxies vs metal-rich massive galaxies and the dependency of the IMF on density and metallicity), and cosmological problems such as the local massive under-density mentioned above.

An important point I tried to emphasize repeatedly is that if Milgromian dynamics is the correct description of galactic dynamics, then we must keep an open mind concerning the possibility that all of cosmological theory may have to be rewritten and the large-redshift data may need to be reinterpreted in terms of different redshift–distance and redshift–age relations.

In the evening of Wednesday I tried out the swimming pool on campus, and their sauna as well. I had access to this swimming pool by staying in The San Martin Faculty Clubhouse and the Hermann Mayer Campus Guesthouse – Maison de France. I must admit, that the day was near to being perfect with the sunshine and a closing dinner with Francoise and Benoit again in our meanwhile standard kosher restaurant (Cafe Mada) nearby the San Martin guest house.

On Thursday, 10th of March, Francoise Combes gave her interdepartmental presentation on “The Molecular Universe” which was well visited, and afterwards we went together with some staff of the Weizmann Institute for lunch at Cafe Mada, where a lively and very entertaining discussion ensued on religeos questions. In the late afternoon we joined the Whisky lounge, in which anyone traveling back to Rehovot from abroad can bring a duty-free bottle of Whisky to and donate it to this lounge.

The Local Group of galaxies is highly symmetrical, with all non-satellite dwarf galaxies lying in two planes symmetrically and equidistantly situated around the axis joining the Milky Way and Andromeda. From Pawlowski et al. (2013).

The Local Group of galaxies is highly symmetrical, with all non-satellite dwarf galaxies lying in two planes symmetrically and equidistantly situated around the axis joining the Milky Way and Andromeda. From Pawlowski et al. (2013).

Young researchers meet every Thursday (remember, this is in Israel the end of the week) to sip Whisky and thereby to elaborate on various problems, such as in our case on the local underdensity, or how the two critical constraints we have from the highly organized structure of the Local Group of galaxies and the CMB together constrain the cosmological model.

An interesting statement made was that while one needs about ten LCDM Universes to get one Bullet cluster (Kraljic & Sarkar 2015), an infinite number of LCDM Universes will not give a single Local Group with its symmetries.

At least these are some of the questions we discussed while there on this Thursday. We were also impressed by all the connections of this Department with Princeton, Caltech and Harvard.

Friday and Saturday

Shops begin to close down and it becomes a challenge to find food and Francoise left for France. In the morning I went for a swim and sauna, and for luch Benoit and myself had to go out of the Weizmann Institute (exit Main Gate and turn left) to find a sandwich place.

photo

The Basha Bar in Tel Aviv.

After some work and then in the evening and at about 18:00 we decided to take a taxi to Tel Aviv. We arrived at the Basha Bar by about 18:30 and stayed for three hours (see photo).

image

The Basha Bar, enjoying a three-hour shisha smoke and many Tuborg beers.

On Saturday, the kosher breakfast in the guest    house was as excellent as ever, but it was    interesting for me to note that neither the   toaster nor the coffee machine were to be  used,  while the water boiler was   on so we  could still have hot Turkish coffee (which we  also drink in Bohemia, by the way, so not   much      new for me here). Nearly everything is closed. Benoit   and myself met for lunch and walked outside the Main   Gate turning right, over the bridge to reach the   Science Park finding bistro Cezar for lunch.

In the evening Moti picked us up for a dinner at his home with Ivon, where we had a long discussion also on the dynamic situation in Germany, Europe and the future.

At the home of Moti in Rehovot.

At the home of Moti in Rehovot. From right to left: Moti, Benoit and the author.

Final comments

Benoit and myself stayed on until Monday, joining the astrophysics journal club which serves lunch at the Department on Sunday. I spent most of the afternoon discussing with Boaz Katz how star clusters may be relevant for type 1a supernovae. In the evening of Monday Benoit and I went again to Cafe Mada for a final dinner and drinks. On Monday, 14.03., we flew out around 16:00, taking a taxi to the Tel Aviv airport at 13:00 from the Department. We shared the same flight back. Again the 4+ hour long Lufthansa stretch without personal-screen-based entertainment system! But, this gave Benoit and myself a chance to further discuss at length the above mentioned Khoury condensate and the Blanchet dipoles as models for galaxy-scale MOND and cosmology-scale dark-matter-like behaviour. But I note that these are not dark matter models. During pauses my thinking was that as the coastal line of Tel Aviv receded in the setting Sun we left a small fraction of the Levant and northernmost Africa, all once pat of the Roman Empire, at a level of civilisation mirrored by the clear, brllliantly lit vast and dynamic power- and resource-hungry central-European night with full autobahns, radiant towns and illuminated football fields in nearly every village. In Frankfurt our ways parted after a last small dinner in the train station, Benoit taking a bus to Strasbourg at about 21:30, and me starting my odessey to Bonn at the same time using the available train connections (German trains all too often run late, these days).

The visit was most memorable for all of us, and Benoit and myself agree that we would like to return. We did not reach any conclusions but we came to know many new people and perhaps helped to underscore the very seriousness of alternative concepts to dark matter and the many failures of the LCDM model.

In closing it is probably fair to say that Milgrom contributed the greatest advance on gravitational physics since Newton and Einstein.

In The Dark Matter Crisis by Pavel Kroupa and Marcel Pawlowski. A listing of contents of all contributions is available here.