52. Solving both crises in cosmology: the KBC-void and the Hubble-Tension

(by Moritz Haslbauer, 20th Nov. 2020, 18:00)

A directly-related presentation by Moritz Haslbauer and Indranil Banik on the KBC-void and the Hubble tension in the ΛCDM model and Milgromian dynamics can found on the Youtube Channel “Cosmology Talks” by Shaun Hotchkiss: Maybe Milgromian gravity solves the Hubble tension!? – The KBC void & νHDM model (Haslbauer & Banik)

The Universe evolves through expansion and gravitation of matter, which leads to some regions having more galaxies and others having fewer. These variations directly reflect the way in which gravity has created structures out of initial density fluctuations over the last 14 billion years. Thus, the observed spatial arrangement of galaxies on scales ranging from 100 kpc to a Gpc is a very powerful test of different cosmological models and gravitational theories.

In our paper “The KBC void and Hubble tension contradict ΛCDM on a Gpc scale − Milgromian dynamics as a possible solution” (Moritz Haslbauer, Indranil Banik, Pavel Kroupa 2020), we tested if the observed spatial arrangement of galaxies on a Gpc scale can be explained by the standard model (Lambda-Cold Dark Matter, ΛCDM) of cosmology. We also tested if a Milgromian dynamics (MOND) model works.

Several surveys covering the entire electromagnetic spectrum (ranging from radio to X-rays) made an exciting discovery: we are in a Gpc-sized region of the Universe containing far fewer galaxies than ought to be in this volume if ΛCDM were correct.

For example, Karachentsev 2012 found a significant lack of galaxies within a sphere of radius 50 Mpc centered on the Local Group. He reported that the average mass density is a factor of 3-4 lower than predicted by the standard model of cosmology. In 2013, Keenan, Barger, and Cowie discovered that the local Universe is underdense on a much larger scale by counting galaxies at near-infrared wavelengths. They found evidence for an incredibly huge void (hereafter the KBC void) with a density about two times lower than the cosmic mean density and with a radius of about one billion light years (or 300 Mpc). This is about 2% of the distance to the observable Universe’s horizon (about 14 Gpc). The KBC void is shown in Figure 1 below.

Figure 1. The KBC void: the actual density of normal matter divided by the mean cosmological density is plotted in dependence of the distance from the position of the Sun (which is in the Local Group of galaxies). The grey area indicates the density fluctuations allowed by the ΛCDM model. Taken from fig. 1 in Kroupa (2015).

The results by KBC are striking because the ΛCDM model predicts root-mean-square (rms) density fluctuations of only 0.032, while the observed value is 0.46 with an uncertainty of 0.06. This drew our attention, so we decided to investigate the local matter field further in both the ΛCDM and MOND paradigms.

First, we started to quantify the likelihood of a KBC-like void in the ΛCDM model. Using one of the largest cosmological ΛCDM simulations (called MXXL), we rigorously confirmed our suspicion: Einsteinian/Newtonian gravity is simply too weak to form such deep and extended underdensities like the KBC void. Our calculations showed that the KBC void alone falsifies ΛCDM with a significance much higher than the typical threshold used to claim a discovery, e.g. with the famous Higgs boson. Consequently, the KBC void is totally inconsistent with the current standard model, implying that the observed Universe is much more structured and organized than predicted by ΛCDM. A similar conclusion was reached by Peebles & Nusser 2010 on much smaller scales by studying the galaxy distribution within the Local Volume, a sphere with 8 Mpc radius centred on the Local Group. And the whole Local Group is also “grievously” structured (Pawlowski, Kroupa, Jerjen 2013), showing a “frightening symmetry” as called by Pavel Kroupa.

The implications of the observed local density contrast on a Gpc scale are far-reaching, because so far it was widely understood that the ΛCDM paradigm provides a very successful description on this scale. Given the many failures of ΛCDM on galaxy scales (e.g. Kormendy et al. 2010 , Kroupa et al. 2010, Kroupa 2012, Kroupa 2015, Pawlowski et al. 2015), the ΛCDM model now faces significant problems across all astronomical scales. A compilation of failures, many of which have reached the 5sigma confidence threshold of ΛCDM failure, can be found in the previous contribution to the Dark Matter Crisis.

The observed spatial arrangement of galaxies on scales ranging from 100 kpc (the satellite planes) to 300 Mpc (our work) strongly suggests that structure formation is much more efficient than possible by Newton’s gravitational law, implying a long-range enhancement to gravity over that allowed by Newtonian gravity. This is in fact not surprising, given that Newton and Einstein both only had Solar System data at their disposal to formulate their theories; gravitation is after all, the least understood of the fundamental interactions. Consequently, we next studied the formation of structures in Milgromian dynamics, which was developed by Israeli physicist Mordehai Milgrom in 1983 (Milgrom 1983). MOND is a corrected version of Newtonian gravitation taking into account galaxy data which were non-existing for Newton and for Einstein. MOND successfully predicted many galaxy scaling relations, but has rarely been applied to cosmological scales.

We extrapolated the MOND model from galactic to a Gpc scale by applying the Angus 2009 cosmological MOND model. This Angus cosmological model has a standard expansion history, primordial abundances of light elements, and fluctuations in the cosmic microwave background (CMB), mainly because both the ΛCDM and MOND cosmology have the same mass-energy budget. However, instead of cold dark matter particles, the MOND model assumes fast-moving collisionless matter, most plausibly in the form of 11eV/c^2 sterile neutrinos. The existence of sterile neutrinos is motivated by particle physics, since they could explain why the ordinary neutrinos have mass. The low mass of hypothetical sterile neutrinos means they would clump on large scales (e.g. galaxy clusters), but not in galaxies, thus leaving their rotation curves unaffected. The following is in fact a most important point to emphasize: The Angus cosmological model needs extra fast moving matter which comes from standard particle physics (but still needs to be verified experimentally). This is very different to the ΛCDM model which needs dark matter particles that account for the observed rotation curves in disk galaxies but which are not motivated to exist by the standard model of particle physics.

The enhanced growth of structure in Milgromian gravitation generates much larger and deeper voids than in Einsteinian/Newtonian gravity. This leads to the formation of KBC-like voids as shown in our paper. Such an extended and deep underdensity causes an interesting effect: parts of the Universe beyond the void with more galaxies pull galaxies in the void outwards. This changes the motions of galaxies, making the local Universe appear to expand faster than it actually is. The situation is illustrated in Figure 2.

Figure 2: Illustration of the Universe’s large scale structure. The darker regions are voids, and the bright dots represent galaxies. The yellow star represents the position of our Sun. Note that the Sun is not at the centre of the KBC void. The arrows show how gravity from surrounding denser regions pulls outwards on galaxies in a void. If we were living in such a void, the Universe would appear to expand faster locally than it does on average. This could explain the Hubble tension. Interestingly, a large local void is evident in the entire electromagnetic spectrum. Credit: Technology Review

Indeed, local observations of how quickly the Universe is expanding exceed the prediction of ΛCDM by about 9%. This so-called Hubble tension is one of the greatest mysteries in contemporary cosmology. In our paper we showed that the unexpectedly high locally measured Hubble constant is just a logical consequence of enhanced structure formation in MOND, and us residing within a particularly deep and large void. This Hubble bubble scenario is however not consistent with ΛCDM because it does not allow for a sufficiently extreme void (Figure 3).

Figure 3: In our paper we showed that that the KBC void cannot form out of the initial conditions of the CMB at redshift z = 1100 if Einsteinian/Newtonian gravity is assumed. Adding the speculative cold dark matter does not help. Therefore, the Hubble tension cannot be explained by the KBC void in the context of the ΛCDM paradigm. Consequently, we aimed to study the formation of structures in Milgromian dynamics. The long-range enhancement to gravity in MOND allows the formation of KBC-like voids, which simultaneously explains the high locally measured Hubble constant.

Thus, the current hot debate among astronomers about the expansion of the Universe being different close to us than far away only exists because astronomers are using the wrong model. A universe which does not have exotic cold dark matter particles but runs on Milgromian gravitation ends up looking just like the real Universe, at least with the tests done thus far.

There is now a real prospect of obtaining a MOND theory of cosmology that explains the data from dwarf galaxies up to the largest structures in the Universe much better than the ΛCDM framework. Consequently, the here described cosmological MOND framework could be a way out of the current crisis in cosmology.

Given my affiliation with Charles University, I have been travelling to Prague and beyond frequently and now the CORONA Pandemic has stopped this flying about the planet — I have already written about the first wave and my getting marooned on a beautiful island next to the Strand. Being this time stranded in Bonn without a Strand during the second wave, I have a little more time on my hands I guess. So here we are, back to the Crisis.

In The Dark Matter Crisis by Moritz Haslbauer, Marcel Pawlowski and Pavel Kroupa. A listing of contents of all contributions is available here.

51. The Crisis in Cosmology is now catastrophic

(by Pavel Kroupa, 10th Nov. 2020, 09:00)

We have not blogged for some time and an update on some of the developments concerning The Dark Matter Crisis has been posted here. Below are recent scientific developments which strongly suggest that the standard model of cosmology (the SMoC) which relies on the existence of cold  or warm dark matter (C/WDM) particles is not a correct description of the observed Universe. Note that the SMoC which is based on the hypothesis that cold dark matter particles exist comprises the currently widely accepted LCDM cosmological model, while the SMoC which assumes warm dark matter particles exist constitutes the currently less popular LWDM cosmological model.  The difference of both models in terms of structure formation and the type of galaxies formed is minimal, which is why both are referred to as the SMoC. 


Why has the Cosmology Crisis become catastrophic?
  1. First of all, C/WDM particles have still not been found after more than 40 years of searching! The account of the situation published on October 11th, 2020, on the Triton Station by Stacy McGaugh is worth reading. Stacy writes “… the field had already gone through many generations of predictions, with the theorists moving the goal posts every time a prediction was excluded. I have colleagues involved in WIMP searches that have left that field in disgust at having the goal posts moved on them: what good are the experimental searches if, every time they reach the promised land, they’re simply told the promised land is over the next horizon?“. In view of the available evidence challenging the existence of C/WDM particles, it is stunning to read “The existence of Dark (i.e., non-luminous and non-absorbing) Matter (DM) is by now well established” in Sec. 26.1.1 of the 2018 version of the Review of Particle Physics. Some five years ago I had dared to  suggest to the editors and section authors to change this very statement to “The existence of Dark (i.e., non-luminous and non-absorbing) Matter (DM) is currently a leading hypothesis” or similar, but the short reply was quite unpleasant.  It is unfortunate that only the cosmological argument leads one to the C/WDM particle hypothesis, there being no independent (non-cosmological and non-astronomical) evidence. Such evidence could have come from indications in the Standard Model of Particle Physics, for example, but this is not the case. Put in other words, if we had not known about cosmology or galaxy rotation curves, we would not be contemplating C/WDM particles. Thus, by the astronomical evidence having gone away (follow the Dark Matter Crisis), the physicists are left with nothing apart from belief. I would argue that the words “belief” and “opinion” should be banned from the language of natural sciences.  Note that the situation is different for the fast collisionless matter (FCM, or “hot dark matter”) which appears in  MOND-cosmological models (Angus 2009).  Independetly of the astronomical evidence, the experimental fact that neutrinos have mass and oscillate suggests the existence of an additional sterile neutrino. Candidates for FCM particles thus arise independently of astronomy or cosmology.   FCM particles do not affect galaxies as they are too low mass, so even at their maximum allowed phase space density as set by the Tremaine-Gunn limit, they cannot be dynamically relevant to the masses of galaxies. Returning to the SMoC: the lack of experimental verification of C/WDM particles comes in hand with additional failures of the SMoC:
  2. Testing for the presence of the speculative C/WDM particles through the very well understood physical mechanism of Chandrasekhar dynamical friction leads to the conclusion that the dynamical friction through the putative dark matter halos around galaxies which are, in the SMoC, made up of C/WDM particles, is not evident in the data (Angus, Diaferio & Kroupa 2011; Kroupa 2015; Oehm & Kroupa 2017). That is, a galaxy which falls towards another galaxy should be slowed down by its dark matter halo, and this slow-down is not seen. The galaxies pass each other with high velocities, like two stars passing each other on hyperbolic orbits, rather than sinking towards each other to merge. This evidence for the non-existence of C/WDM halos around galaxies is in-line with the above mentioned lack of experimental detections (point 1 above). Customarily, an image of two strongly interacting galaxies is automatically interpreted as being a galaxy merger. But this is an over-interpretation of such images, since the implied mergers are not happening in the frequency expected in the standard dark-matter-based theory. Renaud et al. (2016) calculate ant document the theoretical description of an observed strongly interacting galaxy pair in the C/WDM framework and in MOND. Indeed, that the population of galaxies does not evolve significantly since a redshift of one has been found by Hoffmann et al. (2020) and has already been described by Kroupa (2015). This lack of evolution and the hugely vast preponderance of disk galaxies, of which a large fraction is without bulges,  means that galaxies merge rarely as mergers nearly always transform the involved disk galaxies into earlier types of galaxies (disks with massive bulges, or even S0 or elliptical galaxies). 
  3. The Hubble tension is now much discussed. The Hubble Tension comes about as follows: the Hubble constant we should be observing today can be calculated assuming the standard dark-matter based SMoC is correct and that the Cosmic Microwave Background (CMB) is the photosphere of the Hot Big Bang (but see also point 6 below). The actually measured present-day value, as obtained from many independent techniques including supernovae 1a standard candles, gravitational lensing time delays, and mega-masers, comes out to be significantly larger though. The evidence is compiled in Haslbauer et al. (2020). The observer today sees a more rapidly expanding Universe than is possible according to the SMoC. More on the Hubble tension below (point 7).
  4. The planes of satellites (or disk of satellites) problem has worsened: Our own Milky Way has been found to have a more-pronounced disk of satellite galaxies around it than thought before (Pawlowski & Kroupa 2020; Santos-Santos, Dominguez-Teneiro & Pawlowski 2020). Andromeda has one (Ibata et al. 2013, Sohn et al. 2020) and the nearby Centaurus A galaxy too (Mueller et al. 2018). The majority of other galaxies also show evidence for such planes or disks of satellites (Ibata et al. 2015). That the three nearby major galaxies simultaneously show such disks of satellite galaxies, and that disks of satellite systems are indicated by the majority of more distant galaxies, where the SMoC expects such satellite planes only in very rare cases (Pawlowski et al. 2015; Pawlowski 2018), eliminates with de facto complete confidence (i.e. much more than 5sigma) the SMoC, given that the satellites are in the great majority of cases ancient and void of gas such that they must have orbited their hosts many times. The Milky Way satellites also seem to be on almost circular orbits, strongly suggestive of a dissipative origin (Cautun & Frenk 2017) similar to the process that forms solar systems.
  5. Astronomical data have uncovered, with extremely high confidence (more than 5sigma), that the strong equivalence principle is violated on the scale of galaxies  (Chae et al. 2020 ), exactly in-line with a central expectation by MOND (Milgrom 1986), and in contradiction to the SMoC. While apparently not receiving much attention (e.g. via news coverage), this work by Chae et al. (2020) is a game-changer, a break-through of the greatest importance for theoretical physics. Independent evidence for the violation of the strong equivalence principle is also evident in asymmetrical tidal tails around globular clusters (Thomas et al. 2018). Gravity therefore behaves non-linearly on galaxy scales, preventing a simple addition of the fields contributed by different masses. This is a consequence of the corrected, generalised Poisson equation (Bekenstein & Milgrom 1984) which these authors point out is also found in classical theories of quark confinement.
  6. Possibly a “nuclear bomb” nuked standard cosmology: Although the SMoC is only valid if the Universe is transparent, observations show there to be dust between galaxies. This intergalactic dust is ancient, and it radiates as it is heated by photons from the surrounding galaxies. Vaclav Vavrycuk (2018) has added all photons from this dust in an expanding Universe (i.e., in the past the intergalactic dust density was higher in a warmer Universe) and found the photon emission received by us to be very (nearly exactly) comparable to the measured CMB with the correct temperature of about 2.77K.  For an explanation of his research paper see this YouTube video by MSc student Rachel Parziale at Bonn University. Note that the measured weak but large-scale magnetic fields around galaxy clusters and voids produce a correlated polarisation signal. The total number of infrared photons received at Earth is an integral over the time evolving density distribution along the line of sight such that the observed mass distribution within a small redshift around us should not correlate with the overall fluctuation of photon intensity seen in projection on the sky.  The calculations by Vavrycuk thus suggest that CMB=cosmological dust emission, rather than being the photosphere of the Hot Big Bang. CMB research comprises an incredibly precise science, but the role of intergalactic dust needs to be considered very carefully and by avoiding pre-conceptions. Note that even if only a few per cent of the CMB were to be due to ancient intergalactic dust, then this would already bring down the SMoC.
  7. The Universe around us contains far too few galaxies out to a distance of about 0.3 Gpc. This Keenan-Barger-Cowie (KBC) void falsifies the SMoC at  more than 6sigma confidence. The KBC void kills the SMoC because the SMoC relies on the Universe starting off isotropically and homogeneously with the observed CMB fluctuations at the redshift z=1100 boundary condition about 14Gyr ago and cannot evolve density differences to the observed KBC under-density at z=0 which is the present time. Combined with the Hubble tension, the SMoC is falsified with more than 7sigma confidence. Newtonian gravitation plus the hypothetical C/WDM particles are together nowhere near strong enough to generate the observed density contrasts and the observed velocity differences between neighbouring Gpc-scale volumes. The next blog by Moritz Haslbauer will explain this situation.  Note that here we still treat the CMB as the photosphere of a Hot Big Bang, but this may need to be reconsidered (see point 6 above).
  8. The SMoC relies on the Universe having no curvature, but Di Valentino, Melchiorri & Silk (2020) find the enhanced lensing amplitude in CMB power spectra to imply a closed and thus curved Universe. However, this could be related to structure formation being more efficient than is possible in the SMoC (see point 7 above).
  9. Cosmic isotropy is challenged at the 5sigma confidence level by X-ray selected galaxy clusters (Migkas et al. 2020), with the implication that the Universe appears to expand faster in a certain direction. A discussion of this evidence is provided by Scientific American. Cosmic isotropy is also challenged by the significant evidence for a dipole in the number counts of quasars beyond redshift one (Secrest et al. 2020). Independently of this, Javanmardi et al. (2011) also found evidence for a directionally dependent expansion rate.
  10. Last for now but not least, the observation of massively interacting galaxy clusters such as the El Gordo cluster at high redshift (z=0.87) independently falsifies the SMoC with more than 6sigma confidence. In the SMoC, galaxy clusters cannot grow to such masses by this redshift – there is not enough time, or alternatively, Newtonian gravitation is too weak even with the help of the hypothetical C/WDM particles. This is shown by Asencio, Banik & Kroupa (2020). Elena Asencio is researching for her MSc thesis in the SPODYR group in Bonn.

Combining the above KBC void/Hubble Tension/El Gordo falsifications with the previously published tests (Kroupa et al. 2010, Kroupa 2015; see the figure below taken from Kroupa 2012) means that it has become, by now, wrong to still consider the standard dark-matter based cosmological model, the SMoC, as being relevant for describing the Universe. The falsification of the SMoC has reached well above the 7 sigma confidence — Remember: the Higgs Boson was accepted as having been discovered once the experimental confidence rose to 5sigma. It is important to emphasise that independent tests on very different scales lead to the same result, the SMoC being ruled out by many tests with more than 5sigma confidence. 

Standard model of cosmology (SMoC) falsifications prior to 2012

The loss of confidence until 2012 in the Standard Model of Cosmology (SMoC) with each documented failure (numbered here from 1 to 22 and explained in Kroupa 2012) which has never, to date, been resolved. Thus, if each such failure (meaning the SMoC prediction is falsified by observational data) is assumed very conservatively to lead to a loss in confidence of only 30% that the SMoC is valid, then, by today (including the catastrophic >6sigma falsifications described in this blog) the statement that the SMoC describes the real Universe can be defended with a confidence=epsilon, with epsilon being arbitrarily close to zero (taken from figure 14 in Kroupa 2012).

The above list, but more importantly, the very high significance of the results, seem to indicate that a paradigm change may be under way in the sense that our current understanding of the Universe may be entirely rewritten at a very fundamental level. This is already indicated by gravitation being Milgromian. The paradigm shift would be epochal (see also this previous blog on the historical context) if  the suggestion by Vavrycuk concerning the physical nature of the CMB were correct (point 6 above) because in this case our very concept of a Hot Big Bang and the origin of matter would be up in the air. There is independent evidence that a once-in-a-century paradigm shift may be under way: the Universe is much more structured than allowed by the SMoC. Thus, the Local Group of Galaxies (on a scale of 3Mpc across, Pawlowski, Kroupa & Jerjen 2013 ) shows a frightening symmetry in its matter arrangement (I call this frightening because there is currently no known theory to explain this distribution of matter). The arrangement of galaxies (Peebles & Nusser 2010) in the nearby cosmological volume (20Mpc across) does not correspond to the SMoC model and these very galaxies show a history of star-formation which appears to be far too tuned and non-varying (Kroupa et al. 2020). This begs the question how they manage to do so? The entire local Universe appears to be engaged in a significant bulk flow generated by major voids and over-densities (Haslbauer et al. 2020; Hoffmann et al. 2020).

Galaxies provide formal and precise observational data that allow us to correct the work of Newton and Einstein on gravitation, who did not have these data at their disposal. Rather, they formulated the currently assumed theories of gravitation subject to Solar System constraints only, which are now many decades if not centuries old. In his book “A Philosophical Approach to MOND“, David Merritt (2020)addresses the formal philosophical measures concerning how the Newtonian/Einsteinian formulation of gravitation needs to be assessed in terms of its success in describing the observed Universe in comparison with the correction to the law of gravitation through incorporation of galaxy data as formulated by MilgrOmiaN Dynamics (MOND). (Next sentence added Jan 3rd, 2021:) In Merritt (2017) we read his conclusion “The use of conventionalist stratagems in response to unexpected observations implies that the field of cosmology is in a state of ‘degenerating problemshift’ in the language of Imre Lakatos.”  This would tend to close a circle: if Newtonian/Einsteinian gravitation needs to be revised, then we cannot use Einsteinian gravitation to formulate the evolution of the Universe, which opens the whole issue of how it started, what are the boundary conditions and how does it evolve? The Catastrophic Crisis in Cosmology (i.e. the fact that the observational data do not fit to the SMoC) is thus merely exactly the statement that we may well be in the process of a very major paradigm shift.

The big challenge for the future will be to find out how the Universe truly does work. The next blog by Moritz Haslbauer will indicate how a step towards this goal might have been achieved by Haslbauer, Banik & Kroupa (2020). 


In The Dark Matter Crisis by Pavel Kroupa. A listing of contents of all contributions is available here.

40. Scott Dodelson on dark matter and modified gravity (guest post)

Following the recent incident, we and the SciLogs team decided to invite a renown colleague to write a guest blog post. Thinking about possible guest bloggers who are experts in the field of cosmology and approach theories such as MOND with the necessary scientific skepticism, we arrived at Scott Dodelson as one candidate.

Scott is a very well-respected cosmologist. He is a scientist at Fermilab and  a professor in the Department of Astronomy and Astrophysics and the Kavli Institute for Cosmological Physics at the University of Chicago. His research focuses on the largest and smallest scales of the universe: the interplay of cosmology and particle physics. He investigates the nature of dark matter and dark energy, works on the cosmic microwave background and is also interested in modified gravity theories. In addition to his many papers, he has written the textbook “Modern Cosmology”.

We are very pleased that Scott Dodelson has accepted to write this guest post. Thank you, Scott!

 

Is modified gravity a viable alternative to dark matter? Or is dark matter so compelling that pursuits of modified gravity should be abandoned?

There are good reasons to believe in dark matter and to be optimistic about our chances of detecting it in the coming decade. Dark matter explains the flat rotation curves in galaxies; it accounts for the deflection of light far from the centers of galaxies and by galaxy clusters. Many aspects of galaxy clusters make sense only if dark matter is present. Perhaps most importantly, it is the key component in our modern story of how we got here: the standard cosmological model is called CDM or “Cold Dark Matter”. The small inhomogeneities captured in maps of the cosmic microwave background (CMB) grew to be the vast structure we see today via gravitational instability, but the story holds together only if dark matter is also present. The story works and it has been tested by observing the spectra of both the CMB and the distribution of matter on large scales. It is true that dark matter does not easily explain some phenomena on small scales, but there is a ready explanation for this: predictions on small scales are hard. Apart from the non-linearity of gravity, baryons play an important role on small scales, and incorporating these effects into numerical simulations is challenging. It is easiest to make predictions on large scales and those easy predictions have been confirmed with exquisite precision. Beyond all this lies the suite of experiments poised to detect dark matter. Thousands of scientists are now hunting for the particles that comprise dark matter by studying collisions at the LHC; by manning underground laboratories designed to detect it; and by launching satellites to observe the debris created when two dark matter particles in space collide and annihilate. We have reason to be optimistic.

Why then pursue modified gravity?

First, the people who study modified gravity (MG) tend to focus on small scale data rather than large scale data. They are serious, smart  scientists who make observations and fit MG models to the data. These fits tend to be pretty good,  often with very few free parameters and therefore the scientists gain confidence in their models. This focus on different data or different slices through the data presents a challenge to the dark matter model. Eventually, dark matter will have to explain these data sets as well. Slicing and combining things in different ways leads to different challenges than might otherwise arise. Even if you believe in dark matter, you want to confront the data in all forms. The simple (slightly condescending) way of saying this is to say that CDM must ultimately reduce to MONDian phenomenology on small scales.

More importantly, dark matter has not yet been detected. This is not the time to raise the barriers and decree that only those who accept dark matter are serious scientists. We are optimistic, but we have to accept the possibility that dark matter will not be detected in the next decade. Our initial feedback from the LHC shows no hint for the simplest model that contains dark matter, supersymmetry (although these early data are certainly not conclusive). There have been hints in direct and indirect detection experiments, but certainly nothing definitive. It is possible that we will need to think of something completely new. In so doing we are going to have to drop some assumptions, weight evidence differently than we do now. The MG community does this now by downweighting large scale data and focusing more on small scales. This may end up being the correct approach, or we may need to think of something even more radical. I do not know how to do this (How do we encourage a revolution?) but I am pretty sure suppressing alternatives is moving in the wrong direction.

The communities now are quite disparate and find it difficult to engage one another. Is the MG vs. dark matter dispute identical to the disagreements between people from different religions, say, virtually impossible to resolve because the two sides cannot communicate? Certainly not. We are scientists, and facts will change our minds. Some examples of things the vast majority of the MG community accepts or will accept:

  1. MG is not theoretically favored over dark matter because “dark matter is something new”. Both approaches are changing the fundamental lagrangian of nature by adding new terms and new degrees of freedom.
  2. The fact that Xenon100 or Fermi (or perhaps AMS in a few days) has not seen dark matter does not mean the theory is excluded. There is plenty of room in theories like supersymmetry and even more in other more generic models.
  3. If dark matter is detected unambiguously via direct and/or indirect detection, then MG would indeed fall outside the realm of reasonable scientific investigation.

On the other hand, our dispute does share similarities with those that divide adherents of religion. We are passionate, we come at things from different directions with different preconceptions, so it is sometimes difficult to speak the same language, to focus on a single question. At the end of the day, just like the devout in different religious traditions, we are all after the same goal, in our case, trying to understand nature. It is premature to state that our way is the only way.

 

Guest post by Scott Dodelson (07.03.2013): “Is modified gravity a viable alternative to dark matter? Or is dark matter so compelling that pursuits of modified gravity should be abandoned?”.