62. Mailing list for the MOND community

(Guest post by Indranil Banik, November 22nd, 2021)

In the following guest post by Dr. Indranil Banik (past AvH Fellow in the SPODYR group at Bonn University and now at the St.Andrews University), we would like to promote a mailing list for the MOND community and anybody who is interested in this research field.

Following a request, I have set up a mailing list for the MOND community and anybody who wants to stay updated about our work. The idea is that if someone wants to advertise an upcoming talk or an article they have recently posted but they are at an early career stage and do not know everyone in the MOND community, they can just send an email to the mailing list. Also if some discussions between more senior researchers take place through this list, then any early career researchers signed up to it will be included in the conversation even if nobody thought explicitly to include them in the conversation. Regardless of whether you are signed up, you can send an email to the mailing list and everyone on it should receive the message.

The email address is: mondworkers@gmail.com

Please contact Elena Asencio if you want to sign up to this mailing list and thus receive the emails sent to it, she will be in charge of sending an invitation link which you need to accept in order to complete the sign up: s6elena@uni-bonn.de

We think it is not appropriate to send such invitation links to people who have not requested it, as such a request would take only a little time and we would not ask for any reasons for why you want to sign up.
At the moment, only a very small number of emails have been sent to the mailing list because I have only recently set it up. I envisage that it would not be used all that often for a while, and slowly catch on as more people know about it. Obviously it is not suitable for a great many emails as the sender might only want specific people to see it rather than the whole mailing list. But there are times when people want their email to gain extra visibility, and that is what this is about.

Please advertise this to especially early career researchers, it is intended for sharing adverts for upcoming talks, notifying others of articles and blogs, and discussing research ideas you want to share. In general, it is for anything you want to share with everyone on the list, including I suppose asking for advice. It is important that the more senior researchers working on MOND are signed up to it so that early career researchers who want to e.g. advertise a talk or get advice about a project manage to contact everyone on the list without knowing all their names and email addresses. In principle, a fair amount of customisation is possible with the filters that are used, and different filters can be used for different people on the list. At the moment, the only filtering in place is to prevent administrative emails being sent to everyone on the list. Requests to modify filters can be considered, and of course you can be removed from the mailing list if you ask. Thank you to those of you who have already signed up.

61. The crisis in the dark matter problem becomes a historically unparalleled failure in the scientific method

This year, Pavel Kroupa was asked to hold a Golden Webinar in Astrophysics on the dark matter problem. This contribution provides the link to the recording of this presentation which has now become available on YouTube. In this presentation, Pavel Kroupa argues that the dark matter problem has developed to become the greatest crisis in the history of science, ever. This contribution also provides links to recordings available on YouTube of previous related talks by the same speaker from 2010 (the Dark Matter Debate with Simon White in Bonn) and 2013 (in Heidelberg). This might allow some insight into how the debate and the research field have developed over the past dozen or more years.

1) Golden Webinar: “From Belief to Realism and Beauty: Given the Non-Existence of Dark Matter, how do I navigate amongst the Stars and between Galaxies?”

On April 9th, 2021, Prof. Pavel Kroupa presented a talk in the Golden Webinars in Astrophysics series on “From Belief to Realism and Beauty: Given the Non-Existence of Dark Matter, how do I navigate amongst the Stars and between Galaxies?”. The talk is now available on Youtube:

The slides to the talk without the fictitious story can be downloaded here:

If you are interested in other talks presented during The Golden Webinars in Astrophysics series, you can find the record of those already presented on their Youtube Channel, and here is a list of upcoming talks. The Golden Webinars are provided as a free public service and have no registration fees.

2) The vast polar structures around the Milky Way and Andromeda

In November 2013, Prof. Pavel Kroupa presented “The vast polar structures around the Milky Way and Andromeda” in the Heidelberg Joint Astronomical Colloquium. In the talk he discussed the failures of the Standard model of cosmology and the implications for fundamental physics.

A blog entry from 2012 on the vast polar structure (VPOS) of satellite objects around the Milky Way can be found here.

3) Bethe-Kolloquium “Dark Matter: A Debate”

In November 2010, Prof. Simon White (Max Planck Institute of Astrophysics, Garching) and Prof. Pavel Kroupa (University of Bonn) debated on the concept and existence of dark matter during the Bethe Colloquium in Bonn. Their presentations and the subsequent debate are available here:

a) Presentations by Prof. White and Prof. Kroupa

Summary of both presentations:

b) The Debate

The German-language television channel 3sat produced a TV report on the Bethe Colloquium, which can be also found on Youtube (available only in German):

Part I

Part II


In The Dark Matter Crisis by Moritz Haslbauer, Marcel Pawlowski and Pavel Kroupa. A listing of contents of all contributions is available here.

58. The tidal stability of Fornax cluster dwarf galaxies in Newtonian and Milgromian dynamics

(Guest post by Indranil Banik and Elena Asencio, August 2nd, 2021)

A directly-related presentation by Elena Asencio is available here:

The tidal stability of Fornax cluster dwarf galaxies in Newtonian and Milgromian gravity

The slides of the presentation can be downloaded here:

A large number of dwarf galaxies in the Fornax cluster (Figure 1) appear to be disturbed, most likely due to tides from the cluster gravity. In the standard cosmological model (ΛCDM) , the observable structure of the dwarfs is barely susceptible to gravitational effects of the cluster environment, as the dwarfs are surrounded by a dark matter halo. Because of this, it is very hard to explain the observations of the perturbed Fornax dwarfs in this theory. However, these observations can be easily explained in MOND, where dwarfs are much more susceptible to tides due to their lack of protective dark matter halos and the fact that they become quasi-Newtonian as they approach the cluster center due to the external field effect.

Figure 1: Fornax galaxy cluster. The yellow crosses mark all the objects identified in the Fornax deep survey (FDS) for this region of the sky, the black circles are masks for the spikes and reflection haloes, and the red crosses mark the objects that pass the selection criteria to be included in the FDS catalog. Image taken from Venhola et al. 2018.

The impact of tides on what the dwarfs look like is illustrated in Figure 2, which shows the fraction of disturbed galaxies as a function of tidal susceptibility η in ΛCDM and MOND, with η = 1 being the theoretical limit above which the dwarf would be unstable to cluster tides. Moreover, there is a lack of diffuse galaxies (large size and low mass) towards the cluster center. This is illustrated in Figure 3, which shows how at low projected separation from the cluster center, dwarfs of any given mass cannot be too large, but larger sizes are allowed further away. Figure 3 thus shows a clear tidal edge that cannot be explained by selection effects, since the survey detection limit would be a horizontal line at 1 on this plot such that dwarfs above it cannot be detected. Diffuse dwarf galaxies are clearly detectable, but are missing close to the cluster center. Another crucial detail in Figure 3 is that dwarfs close to the tidal edge are much more likely to appear disturbed, which is better quantified in Figure 2 in the rising fraction of disturbed galaxies with tidal stability η. The tidal edge is also evident in Figure 2 in that the dwarfs only go up to some maximum value of η, which should be close to the theoretical stability limit of 1. This is roughly correct in MOND, but not in ΛCDM.

Figure 2: Fraction of disturbed galaxies for each tidal susceptibility bin in MOND (red) and ΛCDM (blue). Larger error bars in a bin indicate that it has fewer dwarfs. The bin width of the tidal susceptibility η is 0.5 in MOND and 0.1 in ΛCDM (each data point is plotted at the center of the bin). Notice the rising trend and the maximum η that arises in each theory.

Figure 3: Projected distances of Fornax dwarfs to the cluster center against the ratio Re/rmax, where Re is the dwarf radius containing half of its total stellar mass, and rmax is the maximum Re at fixed stellar mass above which the dwarf would not be detectable given the survey sensitivity. The dwarfs are classified as “disturbed” (red) “undisturbed” (blue). The black dashed line shows a clear tidal edge – at any given mass, large (diffuse) dwarfs are present only far from the cluster center. This is not a selection effect, as the survey limit is a horizontal line at 1 (though e.g. some nights could be particularly clear and allow us to discover a dwarf slightly above this).

We therefore conclude that MOND and its corresponding cosmological model νHDM (see blog post “Solving both crises in cosmology: the KBC-void and the Hubble-Tension” by Moritz Haslbauer) is capable of explaining not only the appearance of dwarf galaxies in the Fornax cluster, but also other ΛCDM problems related to clusters such as the early formation of El Gordo, a massive pair of interacting galaxy clusters. νHDM also better addresses larger scale problems such as the Hubble tension and the large local supervoid (KBC void) that probably causes it by means of enhanced structure formation in the non-local universe. These larger scale successes build on the long-standing success of MOND with galaxy rotation curves (“Hypothesis testing with gas rich galaxies”). MOND also offers a natural explanation for the Local Group satellite planes as tidal dwarf galaxies (“Modified gravity in plane sight”), and has achieved many other successes too numerous to list here (see other posts). Given all these results, the MOND framework appears better suited than the current cosmological model (ΛCDM) to solve the new astrophysical challenges that keep arising with the increase and improvement of the available astronomical data, which far surpass what was known in 1983 when MOND was first proposed.


In The Dark Matter Crisis by Moritz Haslbauer, Marcel Pawlowski and Pavel Kroupa. A listing of contents of all contributions is available here.

43. Pavel Kroupa on ” The vast polar structures around the Milky Way and Andromeda “

In case you, like me, have missed Pavel Kroups’s recent talk at the Joint Astronomical Colloquium in Heidelberg, you now have the opportunity to watch a movie of the event and download the slides. The movie is quite long (more than an hour), but it is worth watching it to the end. While the talk is titled “The vast polar structures around the Milky Way and Andromeda”, Pavel talks about much more, starting with tidal dwarf galaxies and ending with a discussion of indications for an alternative model of gravity.

This presentation is very similar and in most parts identical to Pavel’s presentations held at Monterey at the conference “Probes of Dark Matter on Galaxy Scales” and in Durham at the “Ripples in the Cosmos” conference. The latter talk resulted in quite a discussion on Peter Coles’ (aka Telescoper) blog “In the Dark”, following his criticism of Pavel’s talk as being “poorly argued and full of grossly exaggerated claims”. The video of a very similar presentation now offers everybody the opportunity to develop their own opinion on the issue. Given the numerous questions Pavel got during his talk and afterwards, people must have thought that it was worth the effort to argue with him, in contrast to Peter’s opinion.

 

See the overview of topics in The Dark Matter Crisis.

42. LUX: Results from another direct (non-)detection experiment for Dark Matter

On Wednesday, the Large Underground Xenon Detector (LUX), a direct detection experiment for Dark Matter, has announced its first results. Before the announcement there was the usual excitement, with Nature News titling “Final Word is near on dark-matter signal”. So, has Dark Matter finally been detected?

Some previous experiments had reported possible detections already. For example, the Cryogenic Dark Matter Search (CDMS) recently presented an impressive number of 3 possible dark matter events (compared to 0.7 they estimated to be background), while the Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) has reported a larger-than-estimated-background number of possible dark matter events, too. In addition, DAMA/LIBRA has claimed a strong Dark Matter signal from annual modulation measurements for about a decade now, and finally the CoGeNT experiment has also claimed an excess of possible dark matter events with a possible annual modulation similar to that seen by DAMA. So, shouldn’t we rejoice and be convinced that first direct hints of Dark Matter have already been seen?

Well, unfortunately it isn’t that easy. As the plot below shows (adopted from the recent LUX publication), the properties of the possible Dark Matter particles claimed by the four experiments are inconsistent with each other. The plot shows the cross-section (i.e. the likelihood or probability) of interaction (compare to shooting at a coin at far distance, then the chance of hitting the coin can be expressed in terms of its physical area: the smaller the less likely an event) as a function of the mass of the weakly interacting dark matter particle, mWIMP, (“weakly interacting” means that the particle interacts with normal matter gravitationally and via the weak interaction). In the plot, the shaded areas correspond to the allowed regions for the different experiments, there is no point on which more than two of them overlap. In addition, everything above the red line has already been excluded by the XENON100 experiment.

Exclusion regions for WIMP Dark Matter from direct detection experiments.

Exclusion regions for WIMP Dark Matter from direct detection experiments.

Nevertheless, if you look at the plot closely, you see that the CDMS area (and if you use a magnifying glass also the CoGeNT area) sticks out of the red line to the left. This has given many Dark Matter aficionados the hope that Dark Matter might be hiding in that region of the parameter space. A hypothesis was constructed, so-called ‘light dark matter’. The name is a bit confusing because it still refers to WIMPS (weakly interacting massive particles), but in a mass range below 10 GeV in contrast to the previously preferred range of about 100 GeV (note the use of units here: mass is measured by particle physicists in terms of energy per c2, where c is the speed of light. This comes from Einstein’s equation E=m c2. As a short cut physicists then simply refer to mass in terms of energy, as here in terms of GeV.)

The LUX experiment is 20 times more sensitive than the previous limits in this mass range. This allowed to predict the number of events expected if the light dark matter particle exists. The number of dark matter events LUX should have measured if the previously reported detections were due to dark matter is:

1550.

However, after background subtraction, it did measure (*drumroll*):

0.

That’s nothing. Not a single event. None. Well, ok, they set an upper limit of 2.4 events, but compared to a thousand that is essentially nothing and completely inconsistent with the expectation. Therefore, the light dark matter hypothesis has been ruled out by LUX.

In addition, this highlights that there must be a serious problem with the other direct detection experiments who have claimed dark matter detections. The new results clearly show that these were false detections (unless you claim, as some scientists suggest, that Dark Matter is Xenonphobic, i.e. does not interact with the Xenon-based experiments. But then you are still stuck with the inconsistency of the other experiments and have a contrived Dark Matter candidate).

In the large plot below an expanded view of the sensitivity of the various experiments is shown, also from the LUX paper.

Exclusion regions for WIMP Dark Matter from direct detection experiments.

Exclusion regions for WIMP Dark Matter from direct detection experiments.

What’s next? Well, obviously the hunt for dark matter goes on, even though observational data already falsify the cold dark matter paradigm on astronomical scales and there are possible alternatives which don’t need a new particle. Nevertheless, Xenon detectors one magnitude larger than the current ones are being planned. And once they don’t detect anything, people might simply try to build even larger ones, claiming that the Dark Matter cross section might be even lower. Unfortunately, this game can in principle continue to infinity (unless we run out of Xenon first), as the cross section might be infinitely small. However, there are natural limits. At some point, the detectors will reach into a background of neutrino interactions, which will hide any potential Dark Matter signal. At this point, the hypothesis of dark matter particles will become untestable by direct detection experiments.

Nevertheless, many colleagues are still betting on Dark Matter. But there is more talk about other types of Dark Matter particles, and there are many that can be imagined. These, in contrast to the WIMPS (remember: weakly interacting …) do not necessarily interact at all with baryons except gravitationally. Whether a non-interacting – and therefore by construction undetectable – particle is still a scientific hypothesis is another question we should start to discuss more seriously. Past centuries have shown which damage untestable hypothesis can do to human progress.

One motivation for preferring the WIMP hypothesis was that they would be a natural consequence of Supersymmetry (SUSY). But apparently the LHC does not see any evidence for SUSY: no deviations from the expectations of the standard model of particle physics for the decay of the B(s) meson, a very heavy Higgs boson only barely consistent with the minimally supersymmetric models and – maybe most important – no signs have been found for the expected supersymmetric particles in the mass range investigated to date. Taken together, this weakens both the SUSY and WIMP Dark Matter hypothesis, maybe opening up room (and minds) to consider completely different explanations to the Dark Matter phenomenon.

Perhaps, as often in the history of science, the answer to the Dark Matter conundrum will come to light through a different experiment than the one that was designed for solving the problem in the first place. For instance, a possible bet for an experiment that could change the game would be the ALPHA experiment at CERN, which if detecting anything like a “negative gravitational charge” would lead to an experimental probe of gravitational dipoles, which have been claimed by some to solve most problems of galaxy dynamics & cosmology, but are mostly ignored by the theoretical and cosmological community for the sole reason that the work is related to the MOND hypothesis.

(c) Marcel Pawlowski (Case Western, USA),  Pavel Kroupa (Bonn, Germany), Benoit Famaey (Strasbourg, France), Fabian Lüghausen (Bonn, Germany), 2013

See the overview of topics in The Dark Matter Crisis.

40. Scott Dodelson on dark matter and modified gravity (guest post)

Following the recent incident, we and the SciLogs team decided to invite a renown colleague to write a guest blog post. Thinking about possible guest bloggers who are experts in the field of cosmology and approach theories such as MOND with the necessary scientific skepticism, we arrived at Scott Dodelson as one candidate.

Scott is a very well-respected cosmologist. He is a scientist at Fermilab and  a professor in the Department of Astronomy and Astrophysics and the Kavli Institute for Cosmological Physics at the University of Chicago. His research focuses on the largest and smallest scales of the universe: the interplay of cosmology and particle physics. He investigates the nature of dark matter and dark energy, works on the cosmic microwave background and is also interested in modified gravity theories. In addition to his many papers, he has written the textbook “Modern Cosmology”.

We are very pleased that Scott Dodelson has accepted to write this guest post. Thank you, Scott!

 

Is modified gravity a viable alternative to dark matter? Or is dark matter so compelling that pursuits of modified gravity should be abandoned?

There are good reasons to believe in dark matter and to be optimistic about our chances of detecting it in the coming decade. Dark matter explains the flat rotation curves in galaxies; it accounts for the deflection of light far from the centers of galaxies and by galaxy clusters. Many aspects of galaxy clusters make sense only if dark matter is present. Perhaps most importantly, it is the key component in our modern story of how we got here: the standard cosmological model is called CDM or “Cold Dark Matter”. The small inhomogeneities captured in maps of the cosmic microwave background (CMB) grew to be the vast structure we see today via gravitational instability, but the story holds together only if dark matter is also present. The story works and it has been tested by observing the spectra of both the CMB and the distribution of matter on large scales. It is true that dark matter does not easily explain some phenomena on small scales, but there is a ready explanation for this: predictions on small scales are hard. Apart from the non-linearity of gravity, baryons play an important role on small scales, and incorporating these effects into numerical simulations is challenging. It is easiest to make predictions on large scales and those easy predictions have been confirmed with exquisite precision. Beyond all this lies the suite of experiments poised to detect dark matter. Thousands of scientists are now hunting for the particles that comprise dark matter by studying collisions at the LHC; by manning underground laboratories designed to detect it; and by launching satellites to observe the debris created when two dark matter particles in space collide and annihilate. We have reason to be optimistic.

Why then pursue modified gravity?

First, the people who study modified gravity (MG) tend to focus on small scale data rather than large scale data. They are serious, smart  scientists who make observations and fit MG models to the data. These fits tend to be pretty good,  often with very few free parameters and therefore the scientists gain confidence in their models. This focus on different data or different slices through the data presents a challenge to the dark matter model. Eventually, dark matter will have to explain these data sets as well. Slicing and combining things in different ways leads to different challenges than might otherwise arise. Even if you believe in dark matter, you want to confront the data in all forms. The simple (slightly condescending) way of saying this is to say that CDM must ultimately reduce to MONDian phenomenology on small scales.

More importantly, dark matter has not yet been detected. This is not the time to raise the barriers and decree that only those who accept dark matter are serious scientists. We are optimistic, but we have to accept the possibility that dark matter will not be detected in the next decade. Our initial feedback from the LHC shows no hint for the simplest model that contains dark matter, supersymmetry (although these early data are certainly not conclusive). There have been hints in direct and indirect detection experiments, but certainly nothing definitive. It is possible that we will need to think of something completely new. In so doing we are going to have to drop some assumptions, weight evidence differently than we do now. The MG community does this now by downweighting large scale data and focusing more on small scales. This may end up being the correct approach, or we may need to think of something even more radical. I do not know how to do this (How do we encourage a revolution?) but I am pretty sure suppressing alternatives is moving in the wrong direction.

The communities now are quite disparate and find it difficult to engage one another. Is the MG vs. dark matter dispute identical to the disagreements between people from different religions, say, virtually impossible to resolve because the two sides cannot communicate? Certainly not. We are scientists, and facts will change our minds. Some examples of things the vast majority of the MG community accepts or will accept:

  1. MG is not theoretically favored over dark matter because “dark matter is something new”. Both approaches are changing the fundamental lagrangian of nature by adding new terms and new degrees of freedom.
  2. The fact that Xenon100 or Fermi (or perhaps AMS in a few days) has not seen dark matter does not mean the theory is excluded. There is plenty of room in theories like supersymmetry and even more in other more generic models.
  3. If dark matter is detected unambiguously via direct and/or indirect detection, then MG would indeed fall outside the realm of reasonable scientific investigation.

On the other hand, our dispute does share similarities with those that divide adherents of religion. We are passionate, we come at things from different directions with different preconceptions, so it is sometimes difficult to speak the same language, to focus on a single question. At the end of the day, just like the devout in different religious traditions, we are all after the same goal, in our case, trying to understand nature. It is premature to state that our way is the only way.

 

Guest post by Scott Dodelson (07.03.2013): “Is modified gravity a viable alternative to dark matter? Or is dark matter so compelling that pursuits of modified gravity should be abandoned?”.

39. Question E: The Dark Matter Crisis continues: on the difficulties of communicating controversial science

(Continuation of the series A-E)

There has been an unsuccessful attempt to close down The Dark Matter Crisis. Here is the story (and an email by Jim Peebles): UPDATE: The guest post is now online.

As regular readers of our blog know, and first-time readers may be able to guess from this blog name, Pavel and I mostly write about the problems and shortcomings of the dark matter hypothesis. One aspect of our research is to test dark matter models on cosmologically small scales such as the Local Group of galaxies. Over the past years, our research and those of others has revealed that numerous model expectations of the dark matter hypothesis are not met by observations. This led us to the conclusion that we should consider a paradigm shift in how we understand the dark matter phenomenon. Maybe, we thought, a modification of the laws of gravity, one possible approach being Mordehai Milgrom’s MOdified Newtonian Gravity (MOND), could solve these issues.

Doing research that identifies shortcomings in a widely-held assumption and that is skeptical of a mainstream hypothesis is certainly a very interesting and rewarding endeavor for a scientist. It is closely connected to the fundamental scientific method of falsification and holds potential for groundbreaking discoveries. However, working on a controversial scientific topic also has its downsides. For one, papers criticizing basic assumptions are less attractive to be cited in mainstream publications. And before publication, controversial science already faces a more challenging peer-review process. For example Ashutosh Jogalekar explains in his blog The Curious Wavefunction:

“[…] reviewers under the convenient cloak of anonymity can use the system to settle scores, old boys’ clubs can conspire to prevent research from seeing the light of day, and established orthodox reviewers and editors can potentially squelch speculative, groundbreaking work.”

In addition to these ‘formal’ scientific interactions via academic publishers, there is also communication amongst scientists. For instance, early PhD students, who are still in the process of learning about the business of doing science, may be looking for advice from mentors and other more experienced scientists. Unfortunately, when the talk comes to controversial areas of science, students are often discouraged from getting involved in non-mainstream research (note, however, Avi Loeb‘s opposite advice). This begins with the commonly expressed belief that such research might “hurt your career”, but sometimes even more direct warnings are made. For example, a few years ago a professor told me that he would never hire someone who has published even a paper on MOND. A fellow PhD student got a similar piece of “advice” while visiting a different university, where one scientist advised him that he should only publish results which are negative for MOND, but nothing in support of it.

For people who are just starting in science, especially, such comments may be alarming. Graduate students do not yet know much about the job market. They therefore tend to believe what the ‘old boys’ tell them. To researchers who have a bit more experience, such warnings are often incomprehensible since they know by then (if they didn’t already initially) that it is entirely unscientific to withhold research results that do not fit a pre-determined picture.

The difficulties of working in a controversial field of research do not stop here. Communicating such science to a wider audience can also result in problems. While the public is generally very interested in the challenges faced by prevailing theories, there are difficulties to overcome. One of them is the question of how to differentiate completely unscientific things (the paranormal, creationism, …), from actual, albeit controversial, science.

A promising approach to overcome this difficulty is to discuss controversial science publicly. This way, the public can follow and be part of the debate, learn that arguments are backed by references to peer-reviewed research and see that hypotheses need to be tested through comparison with observational data—essentially the public gets to view the scientific process as it is applied in any branch of research. By demonstrating that scientists stick to facts, respond to opposing arguments and do not resort to emotionally driven rhetoric, we can adequately demonstrate the strengths of science.

The strength of the scientific method over dogmatic beliefs should always prevail in order to be able to contemplate the possibility of paradigm shifts. This is indeed a complex idea to explain, and presenting research results as absolute truth is something scientists should be prepared not to do. Unfortunately, this is not always the case. Sometimes, some people profess the ideas they subscribe to as the scientific or absolute truth. Such claims of absolute truth completely contort the nature of science. It is certainly going too far when science bloggers, in an attempt to protect their preferred mainstream theory, demand that a scientists’ blog be closed because their views differ. Scientists who publish their research in scientific journals, who go through the peer-review process and who in the end publish slightly unorthodox but nonetheless valuable ideas, should not be censored from the science blogosphere.

Unfortunately, this is what happened to our blog, The Dark Matter Crisis.

A popular science blogger demanded that SciLogs.com discontinue our blog and has, for a short time, succeeded. We would like to use this occurrence as an example of the reactions and difficulties faced when doing online communication of controversial science topics. The incident demonstrates why debate in science must be based on objective facts and not be driven by personal opinions. It illustrates the dangers of mixing scientific convictions with personal goals and emotions.

Why we started the Dark Matter Crisis blog

In late 2009, Pavel and I wrote an invited article for the German popular science magazine Spektrum der Wissenschaft about dwarf galaxies as tests of cosmology. During the process, Spektrum asked us to also start an accompanying science blog on SciLogs.eu, to provide a place for discussions that might arise due to the controversial nature of our work. We were very hesitant initially, but after talking to students and colleagues we agreed to start a blog. What convinced us to blog was the possibility to get in touch with readers, which would allow immediate feedback and discussions, and the ability to continuously provide current information about our active field of research. When the Spektrum article was published in July 2010, the blog The Dark Matter Crisis went online, too. We blogged on it for about two years, and then agreed to move The Dark Matter Crisis to the new SciLogs.com network. The first article on the SciLogs.com blog was published on January 3, 2013.

The discontinuation of The Dark Matter Crisis

On January 28, we received an email from the SciLogs.com community manager. The email informed us that our blog had been discontinued and that we would no longer be able to update it, although the blog’s archive would remain on the site. The short explanation provided was that the “thesis pushed by The Dark Matter Crisis is now overwhelmingly considered incorrect by the scientific community and as such cannot be considered sound enough to be promulgated by SciLogs.com”.

As we blog mostly about our own and related research, such a justification not only attacks our blogging but also hits at the very heart of our scientific work. Consequently, the first reaction to this email was shock, quickly followed by many questions. Which “theses pushed” by our blog “is now overwhelmingly considered incorrect”? That the currently prevailing hypothesis of cold dark matter has serious problems? This certainly is not considered overwhelmingly incorrect, as there are many scientists working on addressing these problems, both within the framework of standard cosmology (e.g. Mutch et al. 2013, Fouquet et al. 2012), as well as by modifying it (e.g. Lovell et al. 2012, Macció et al. 2012) or even by taking a completely different approach (e.g. Famaey & McGaugh 2012). Also, we were invited to start the blog because of the controversial nature of this topic.

Furthermore, at the time of discontinuation, the SciLogs.com version of The Dark Matter Crisis had only one blog post thus far. The sole post presents the recent discovery of a co-rotating plane of satellite galaxies around Andromeda reported in Ibata et al. (2013, Nature). It discusses possible implications which are right now actively debated among scientists. In fact, that blog post was, as far as I can tell, the only one on the web to provide a detailed explanation as to why the Nature paper might be a threat to Einstein’s theory of gravitation, which was explicitly alluded to by numerous publications, but explained by none (most articles in classical media focussed on the 15-year-old co-author of the study). Surely, it is not the aim of SciLogs.com, as a service to provide information to the public, to censor a blog that was communicating science to the public. Therefore, we concluded that this blog post could not have been the reason for the discontinuation.

But even expanding the scope to the old SciLogs.eu blog, we cannot see where we push a thesis which is not scientifically sound. Our blog posts are full of references to peer-reviewed publications. While we often discuss non-mainstream interpretations, we always remain within the realm of science and discuss an active field of research. For example, we frequently mention alternatives to dark matter which try to explain the missing mass phenomenon by non-Newtonian gravity laws. As an active scientist in this field, one can certainly not say that this is not scientifically sound and “overwhelmingly considered incorrect”. Just looking at the number of citations to the first paper about MOND by Milgrom, shows a citation count that has been constantly rising over the last few years and is currently at 1066.

So, what might have triggered the decision to discontinue our blog?

What Who has triggered our blog’s discontinuation?

Digging around on Twitter revealed several interesting discussions which were obviously related to the discontinuation of The Dark Matter Crisis. It turns out that a former-scientist-turned-blogger, who had spent a few years doing research in cosmology (publishing 5 first-author papers with now 88 citations), demanded the discontinuation.

The blogger (@StartsWithABang) contacted @scilogscom on January 24 by replying to a 15-day old tweet that announced our blog’s move to the new domain. He tweeted “Bummed that @scilogscom is in the business of promoting contrarian scientist viewpoints.”, and asks the SciLogs.com community manager (@notscientific) “[Why] are you allowing @scilogscom to promote contrarian voices that undermine public understanding of [science]?”, adding “You have taken on “Dark Matter Crisis” blog, whose mission is to undermine all of physical cosmology & promote MOND.”

The two agreed to discuss the issue via email, with the blogger adding that he was “*personally* worried that you are promoting clicks & false controversy over quality science content”, and states that he is “very, VERY disappointed about this move that @scilogscom has made”.

By now the SciLogs.com community manager has explained to us what happened after these tweets. He and the publishing director responsible for SciLogs.com unfortunately assumed that the blogger’s criticism was justified. They decided to close our blog without conferring with others or asking us for a statement. After we complained about the discontinuation, they performed an internal investigation, which involved reaching out to astrophysicists and other people, and have realized that discontinuing our blog was a big mistake. We attribute SciLogs.com’s poor judgement to two factors: neither the community manager nor the publishing director has an (astro)physical background, it was the first time that SciLogs.com had experienced an attack against one of its blogs.

So, the result was that four days after the tweets about The Dark Matter Crisis were posted, our blog was discontinued. Interestingly, only a few hours later the blogger who complained about our blog tweeted: “Shout out to the @SciLogscom  team, esp. @notscientific  and @laurawheelers, for stepping up & vetting their #science blogs for quality!”. (@laurawheelers was not involved in the decision to discontinue our blog. She only referred @StartsWithABang to SciLogs.com’s community manager.) @StartsWithABang added “They are storing the archives, but the blog is inactive and will not be continued”. While until then this situation was only an example of one blogger attacking our blog and our research with contorted accusations, the reactions of a few other Twitter users  were disheartening.  Some of them, science communicators and even an active astronomer, welcomed the blog’s discontinuation. One would have hoped that they would see the value of our science blog, regardless of their own opinions on the controversial topic we blog about.

Some slightly earlier attacks

The incident seems to be related to a recently published paper by us: Kroupa, Pawlowski & Milgrom (2012). When the paper appeared on the preprint server arXiv on January 18, this lead to a short discussion on Twitter, during which the same blogger who would later led to the short-timed discontinuation of our blog, made some pretty harsh accusations against “the MOND zealots”, whom he seems to call a mix of skeptics and liars and deniers who trot out misinformation and undermine confidence in science. In reaction to our paper, he published a blog post in which he claims to rule out MOND with one graph. Unfortunately, his blog post does not address any of the issues discussed in our recent paper, nor does it address those discussed in many other papers over the recent years.

In reaction to the accusations and contorted depiction of our research, I submitted a comment to the blog post. It asks for a clarification of the accusations and tries to start an objective discussion. There was no reason to censor it. Nevertheless, the comment was not published the first time, so I submitted it again the following day. Again, it was not published. I then decided to ignore the issue and the blogger in the future, as a factual debate seemed to be undesired and emotion-laden quarreling on the web is a waste of time. However, as our blog was actively attacked only a few days later by that very same blogger, the comment is being published here for transparency:

“When I understand your Twitter tweets from yesterday correctly, you think that “Kroupa and some of the other MOND zealots” are, at least to a certain extend, liars and deniers who “trot out misinformation & undermine confidence in science”. Is this what you were saying or did I misunderstand something? My honest opinion is that this would be unnecessarily aggressive, insulting, unprofessional and unscientific as it does not help to establish a well-founded discussion of the scientific issues.

The fact that you do not address the numerous problems of LCDM, many of which are mentioned in the recent paper, does not help shaping a discussion. In your blog post, you base your argumentation on only one problem of MOND: the the strong oscillations in the matter power spectrum. However, according to e.g. Famaey & McGaugh (2012), this problem is not as clear-cut as you claim. They write: “the non-linearity of MOND can lead to mode mixing that washes out the initially strong signal by z = 0”, and even suggests a more robust test.

More fundamentally, basic logic tells us that falsifying one hypothesis does not provide information about the validity of an opposing one. Just to give an example: Disproving that the world is a disk does not prove that the guy who is claiming that the earth is donut-shaped is right. As it turns out, the earth is neither a disk nor a donut, but essentially a sphere. Nevertheless, you jump from this graph to a conclusion about “MOND, MOG, TeVeS, or any other dark-matter-free alternative”. In addition, if you would consider the numerous failures of the LCDM model in a similar way like those of MOND, according to your argumentation we would have to give up on both, modified gravity theories and dark matter.

As a last note, I’d like to point out that in our recent paper we do not present MOND as the final answer. The fact that there is not a single “MOND”, but many different attempts to construct a full theory of modified gravity (see Sect. 6) already demonstrates that more work needs to be done. But in order to search for a solution of the many problems LCDM has on scales of many Mpc and below (where MOND is very successful), scientists should be encouraged to investigate this possibility. That is what a paradigm shift is, in my opinion: acknowledging that there are problems and being open-minded for new or alternative explanations, without hiding the problems that these alternatives may themselves face. As we acknowledge in the paper, mass discrepancies in galaxy clusters and building a consistent cosmology are real challenges for MOND, but there exist more or less convincing answers to these problems in the various effective covariant theories that have been proposed to date (see e.g. the list of theories in Famaey & McGaugh 2012 and their Section 9.2). Even if most of these tentative new explanations will turn out to be unsuccessful, I am sure there still is much to learn about the Universe. We have made this clear in the final sentences of our paper, too: “Understanding the deeper physical meaning of MOND remains a challenging aim. It involves the realistic likelihood that a major new insight into gravitation will emerge, which would have significant implications for our understanding of space, time and matter.”

So, I don’t think there is any lying, denying or misinformation involved on part of us as active scientists. It is just that the Universe is a hard nut to crack. Having the strength to admit that none of the current models are the final answer should in fact increase our confidence in science.”

It is ironic that in a comment on this very blog post, the blogger suggests to a critical reader that if he does not like his way of blogging, the reader could get his own blog. Only a few days later the blogger seems to have worked towards the discontinuation of our blog …

The aftermath and an upcoming guest post

After being informed about the discontinuation and after having discovered the background story on Twitter, we got in touch with the staff responsible for SciLogs.com. As mentioned before, they quickly realized that the discontinuation of The Dark Matter Crisis was a mistake. After discussing the issue with Richard Zinken, the publishing director of Spektrum der Wissenschaft (who is also responsible for the SciLogs.com blog network), he and the community manager apologized for the incident. We have accepted the apology and understand that mistakes can happen. During the last weeks, we worked together with the SciLogs.com team, thinking about what would be the best way to re-open the blog and how to handle the recent events in a constructive way. Together with Richard and the community manager we developed this blog post on the difficulties faced when communicating controversial research.

Together, we also decided to invite a guest blogger to The Dark Matter Crisis, preferably a cosmologist who is skeptical about our views. We hope that this helps to shape the debate and keep it at a scientific level, in contrast to the seemingly emotionally driven attacks which misshape the public’s view of how science handles controversial research. We have asked a few colleagues for such posts, and are content that one experienced scientist has agreed to act as our guest blogger. We know that he is well-respected in the field. His guest post will go online tomorrow.

UPDATE (March 09 2013): In a recent blog post, supposedly trying to shut off people working on dark matter alternatives forever, the blogger attacking us wrote: “Courtesy of Scott Dodelson, I present to you the one graph that incontrovertibly settles the matter.” We now rather offer you a guest blog post on that matter by … Scott Dodelson.

In the meantime, Jim Peebles, Albert Einstein Professor Emeritus of Science at Princeton University, gave us his explicit permission to publish the full, unedited email in which he explains that he would not like to be our guest blogger. We would like to thank him for this and, given our recent experience, fully understand that he prefers to not start blogging:

“Hello Pavel

Sorry for the delay. I have been thinking about your email, and have decided that I will not contribute a commentary on your situation.

I agree with many of your points. The behavior of [SciLogs.com] is silly; this is not the way of science. As you indicate, the community is remarkably optimistic about galaxy formation within the standard LCDM cosmology. I consider this an example of the human herd instinct. With you I distrust talk of precision cosmology; we are still seeking an accurate cosmology. But I think we differ on the weight of evidence for LCDM. I am deeply impressed by the variety of independent lines of evidence that point to LCDM, and conclude that the case for LCDM as a useful approximation to reality on the scale of the Hubble length is about a good as one gets in physical science. No one can prove that there is not another cosmology without dark matter that fits the data as well as LCDM, and no one can prove that there is not another theory that works as well as quantum mechanics. I expect we both put the odds on the latter as too low to matter. I feel close to the same about the former.

You are entirely entitled to take the approach I see in your blog, but I do not want to state my opinion on your blog. I don’t want to take up [blogging] anywhere!

Regards, Jim”

In addition, you can have a look at a recent article in New Scientist: “Dark matter rival boosted by dwarf galaxies”. The article mentions James Binney, from the University of Oxford, who says that he “believes that some sort of MOND-like behaviour may manifest itself on small scales”, while Avi Loeb, of Harvard University, being skeptical about MOND, nevertheless states that: “The theory deserves a lot of respect.”

We believe that all astronomers, whether skeptical or not of our controversial research, are able to agree with Loeb’s statement, and it is in this spirit that we would like to continue our endeavours in online science communication.

By Marcel S. Pawlowski and Pavel Kroupa  (08.03.2013): “The Dark Matter Crisis continues: on the difficulties of communicating controversial science” on SciLogs. See the overview of topics in The Dark Matter Crisis.