GRAVITATION-TRIGGERRED Star Formation IN INTERACTING GALAXIES

• Turbulence and tides

Background & Motivations (from Λ-CDM)

• Changing the tides

MOND & PoR

With the help of

B. Famaey, F. Bournaud, P.A. Duc, K. Kraljic, B. Elmegreen, F. Combes, R. Teyssier ...

UNIVERSALITY OF STAR FORMATION?

THE MILKY WAY

= 100 pc * 100 pc

SCHMIDT-KENNICUTT RELATION

 \rightarrow Variations of turbulence within the disk explain the break at low Σ_{gas} .

see also Padoan & Nordlund 2011, Hennebelle & Chabrier 2011

WHAT ABOUT STARBURSTS?

PHYSICS OF STARBURSTS

SF in nuclei due to inflows

SF in overlap

due to cloud-cloud collisions?

Frequent enough?

SF in the "Northern-arc" due to ...?

TRIGGERED, ENHANCED STAR FORMATION

A QUICK REMINDER ABOUT TIDES

- Galactic collisions change the nature of tides
- Over large volumes
- Valid for all interacting galaxies

TIDES AND ISM STABILITY

Jog (2013,2014) see also Mondal & Chakraborty (2015)

A QUICK REMINDER ABOUT TURBULENCE

Local velocity field =

SOLENOIDAL AND COMPRESSIVE TURBULENCE

Candle smoke Photo taken in the Inter-Sofa Medium (ISM) of my living room

> compressive turbulence

solenoidal turbulence

SOLENOIDAL AND COMPRESSIVE TURBULENCE

"Natural" turbulence energy budget (i.e. with no external forcing)

Federrath et al. (2010)

YET ANOTHER SIMULATION OF THE ANTENNAE Renaud, Bournaud & Duc (2014)

best match with observations

10 kpc

blue: gas red: old stars white/yellow: young stars

THE ANTENNAE

gas

new stars

2 kpc

RAMSES, 1 pc, heating+colling, SF, HII, radiative pressure, SNe ...

IN A MERGER

RELATION TO THE SFR

POR TO THE RESCUE!

(A) Same setup

based on previous works (Newton)

 \rightarrow PoR will not match the observations

(B) Same results

→ more fair, but less direct comparaison

Not yet

PIONEER WORK

Sticky particles, 290 pc, based on Toomre & Toomre (1972) model

Nothing about the star formation ...

INITIAL CONDITIONS

Same baryonnic components

→ disk structures, instabilities (bars, spirals, clumps ...)

Same rotation curve

MW-A

Kuijken & Dubinski (1995) as already noted by Calendish et al. (2014)

FAIR COMPARISON?

Dark matter

Refinement on number of particles (*m_refine*)

Refinement on mass (mass_sph (N>refine

FAIR COMPARISON?

Dark matter

Refinement on number of particles (*m_refine*)

if (N > 8) then refine

UNFAIR COMPARISON

Different cell size density temperature star formation feedback injection

...

POR ON A ΛCDM Orbit

10 kpc

30 Myr per second

PoR, 6 pc, MW-A progenitors, heating+colling, SF, HII, radiative pressure, SNe ...

Tiret & Combes (2007)

SPOT THE DIFFERENCES

STAR FORMATION RATE

Wow!

Newton says:

intense, bursty, short \rightarrow star*burst* For the Antennae ... but not only

 \rightarrow Rather insensitive to orbits and progenitors

di Matteo et al. (2008)

STAR FORMATION RATE

STAR FORMATION RATE

Observational constraint? Maybe but difficult (model degeneracy, SFH uncertainties ...)

TIDAL DWARF GALAXIES

TIDAL DWARF GALAXIES

In-situ SF

Delayed collapse 10% (up to 20%) of total SFR compared to < 1% observed Boquien et al. (2009, 2010)

STEPHAN'S QUINTET OBSERVATIONS

"Missing satellite"!

STEPHAN'S QUINTET MODEL

FUTURE OF STEPHAN'S QUINTET?

