Reproducing properties of MW dSphs as descendants of DM-free TDGs

Yanbin YANG⁽¹⁾

Francois Hammer⁽¹⁾, Sylvain Fouquet⁽¹⁾, Hector Flores⁽¹⁾, Matheu Puech⁽¹⁾, Marcel S. Pawlowski⁽²⁾ and Pavel Kroupa^(2,3)

⁽¹⁾Paris Observarory/Meudon, ⁽²⁾Case Western Reseve University, USA, ⁽³⁾HISKP Bon university

Content

- Disk rebuilding (IMAGES, large VLT program)
- The Local Group
- M31 : a major merger result & its impact
- Distribution of MW satellites
- TDG origin of MW satellites
- Conclusion

IMAGES (Intermediate MAss Galaxy Evolution Sequence)

Hammer 2005; Flores et al. 2006; Puech et al. 2007; Yang et al. 2008; Neichel et al. 2008; Rodrigues et al. 2008; Puech et al. 2008; Peirani+08; Hammer et al. 2009; Yang+09; Delgado et al. 2010, Fuentes-Carrera+10

- 63 emission line galaxies (*M_J* < -20.3), (Mass > 1.5×10¹0Msun)
- redshifts at 0.6 (0.4 < z < 0.75), (6 - 8 Gyr)
- Observations
 - spatially resolved kinematics maps with GIRAFFE IFU/VLT
 - morphology with GOODS/HST
 - metallicity with FORS/VLT
 - UV from GALEX
 - IR from IRAC / 24-mu Spitzer

Yang et al. 2008, A&A

IMAGES: Morphology evolution at two epochs

z = 0.65 (6-8 Gyr ago)

z = 0

-E/SO were mostly in place -Half of spirals did not.

Delgado et al. 2010

IMAGES: kinematics of ionized gas of the 63 galaxies

Flores et al. 2006 Yang et al. 2008, A&A

Identify a rotating disk

IMAGES: Morphology evolution at two epochs

z = 0.65 (6-8 Gyr ago)

z = 0

Rotating Perturbed

Complex

Neichel et al. 2008

Hammer et al. 2009

2/3 of non (or semi-)relaxed galaxies have « secured » merger models

20% baryon

1.1.1.1.1.1

Wang et al. 2012

NGC 4013

Observation

Major merger

Star

HI

Wang et al. 2015

Content

- Disk rebuilding (IMAGES, large VLT program)
- The Local Group
- M31 : a major merger result & its impact
- Distribution of MW satellites
- TDG orgin of MW satellites
- Conclusion

The Local Group

The Sun

(l,b)=(121, -21.5)

780 kpc

M32 M33 And 1,2

... ...

dIrr, dTrans

Phenix WLM NGC 300

....

dwarf spheroidals (classical)

Leo I LeoII Fornax Darco Sextans

Sculptor Carina UMi Sagittraius

ultra-faint dwarf spheroidals (SDSS and DES)

Segue I

... ...

Content

- The Local Group
- M31 : a major merger result & its impact
- Distribution of MW satellites
- TDG origin of MW satellites
- Conclusion

The Milkv Wav versus M31 and other snirals Hammer et al. 2007, ApJ, 662, 322

Accurate measurements for the MW and M31:

 $M_K \& R_{disk}$ (COBE/DIRBE, Hipparcos...) with $V_{flat}(MW)=244$ km/s from Reid et al. (2009) and Bovy, Hogg & Rix (2010)

<u>Compared to other spirals (SDSS</u>):
the MW has a too small stellar mass, radius & angular momentum;
M31 is rather typical.

In the $(M_K, R_{disk}, V_{flat})$ volume, there are only ~ <u>1-2%</u> of Milky Way-like galaxies.

23th October 2013

Sunday, February 23, 14

Andromeda galaxy (M31)

PandAS McConachie+2009 with CFHT

>5-8Gyr

Stellar ages by Brown et al. 06,07,08

>5-8Gyr

Andromeda galaxy (M31)

Hammer et al. 2010

✓ Rotation curve

A 3:1 gas-rich merger model reproduces:

✓ Bulge-to-total mass ratio : B/T = 0.28

 \checkmark Scale length of thin disk Rd = 5.6 kpc

✓ Giant stream both position and kinematics

✓ Thick disk (10% of total stellar mass)

✓ 10-kpc, HI star-forming ring

✓ Age distribution of stars

«A Vast Thin Plane of Co-rotating Dwarf Galaxies» (Ibata **2015** Nature)

-15 satellite galaxies are located in a plane (up to 400kpc) center at M31 and coherent in radial velocities
- The plane includes our MW in 1 degree.

Hammer et al., 2013, MNRAS, 431, 3343

S. Fouquet+2015 (submitted)

The Local Group

IC10

(l,b)=(1

	70	770
•		

Mc

M32 M33And 1,2

... ...

Trans

OC Dr. A

C

Leo I LeoII Fornax Darco

Sextans

... ...

Sculptor Carina UMi Sagittraius

ultra-faint dwarf spheroidals (SDSS and DES) Segue I

dwarf spheroidals (classical)

The Sun

Content

- The Local Group
- M31 : a major merger result & its impact
- Distribution of MW satellites
- TDG orgin of MW satellites
- Conclusion

DoS: Disk of satellites (Kunkel & Demers 1976; Lynden-Bell 1976, Kroupa et al. 2005) VPOS: a vast polar structure of satellite galaxies (Pawlowski 2012)

S. Fouquet+2012

S.Fouquet+2012

mercredi 23 septembre 15

Content

- The Local Group
- M31 : a major merger result & its impact
- Distribution of MW satellites
- TDG origin of MW satellites
- Conclusion

The Local Group

ICJ

(l,b)=(1)

780 kpc

M32 M33And 1,2

... ...

Mc

d Trans

OC Dr. A

Leo I LeoII Fornax Darco Sextans

Sculptor Carina UMi Sagittraius

ultra-faint dwarf spheroidals (SDSS and DES)

dwarf spheroidals (classical)

The Sun

Segue I

... ...

Leo I Fornax Sculptor Draco ... (9 dSphs)

MW satellites: assumed to be Dark Matter dominated

• High dynamical (M/L)

• Flat velocity disperion profile

Walker+07,09,12

Gas-rich TDG & the MW interactions

- N-body hydrodynamic simulations
- MW model (bulge+disk+ Gasous Halo +dark halo) (T>10⁶⁴ K, Mayer 2009)
- TDGs taken from M31 simulations (Hammer+10)
 - TDGs are free of DM and gas-rich > 90% in term of mass
- hyperbolic orbits <-- M31 motion+Tidal Tail motion

From gas-rich TDG to dSph

TDG3: $m_{star} = 1 \times 10^7 Msun$ $m_{gas} = 1 \times 10^8 Msun$

View from the Sun

Limit Obs. 28 mag/arcsec^2

about 1 M star particles for TDG in order to follow the expansion of stars

mercredi 23 septembre 15

Walker+2009

Conclusion

- MW dSphs could be the residues of tidal dwarf galaxies (Kroupa, 1997).
 - 1. When gas-rich TDGs interact with MW hot gaseous halo, they may completely loss their gas.
 - 2. Then, as a consequence, their stellar content is progressively driven out of equilibrium and strongly expands, leading to low surface brightness feature and mimicking high dynamical M/L ratios.
- The problem of missing satellites is severely strengthened by our results not only because of TDG but the TDGs originated from M31.
- A prediction of the Expansion of dSph

Yang et al. 2014, MNRAS

Merci.

Appendix

Yang & Hammer 2010

$$\mu_{\rm W} = -62 \pm 18 \ \mu \text{as yr}^{-1},$$

$$q=1.0$$

$$\mu_{\rm N} = -25 \pm 13 \ \mu \text{as yr}^{-1},$$

Complex kinematics: kinematic disturbances are global not local

Velocity field

 σ map

Minor merger (15:1): only tiny effect on σ map

mercredi 23 septembre 15

HST-ACS

Outflows:

- only a handful of galaxies have significant shifts between abs. and emission lines (Hammer et al. 2009; Rodrigues et al., 2012).

Clump fragmentation & cold flows:

only 20% of anomalous galaxies are clumpy (Puech, 2010)
cold gas accretion tends to vanish in massive halos at z<1 (<1.5 Mo/yr at z~0.6 see Keres et al. 2009, Brooks et al. 2009)

Secular evolution:

Kinematic perturbations are too strong and extended